68 research outputs found

    Context-specific effects of genetic variants associated with autoimmune disease

    Get PDF
    Autoimmune diseases such as rheumatoid arthritis and coeliac disease are typical examples of complex genetic diseases caused by a combination of genetic and non-genetic risk factors. Insight into the genetic risk factors (single nucleotide polymorphisms (SNPs)) has increased since genome-wide association studies (GWAS) became possible in 2007 and, for individual diseases, SNPs can now explain some 15-50% of genetic risk. GWAS have also shown that some 50% of the genetic risk factors for individual autoimmune diseases overlap between different diseases. Thus, shared risk factors may converge to pathways that, when perturbed by genetic variation, predispose to autoimmunity in general. This raises the question of what determines disease specificity, and suggests that identical risk factors may have different effects in various autoimmune diseases. Addressing this question requires translation of genetic risk factors to causal genes and then to molecular and cellular pathways. Since > 90% of the genetic risk factors are found in the non-coding part of the genome (i.e. outside the exons of protein-coding genes) and can have an impact on gene regulation, there is an urgent need to better understand the non-coding part of the genome. Here, we will outline the methods being used to unravel the gene regulatory networks perturbed in autoimmune diseases and the importance of doing this in the relevant cell types. We will highlight findings in coeliac disease, which manifests in the small intestine, to demonstrate how cell type and disease context can impact on the consequences of genetic risk factors

    Single-Cell RNA Sequencing of Peripheral Blood Mononuclear Cells From Pediatric Coeliac Disease Patients Suggests Potential Pre-Seroconversion Markers

    Get PDF
    Celiac Disease (CeD) is a complex immune disorder involving villous atrophy in the small intestine that is triggered by gluten intake. Current CeD diagnosis is based on late-stage pathophysiological parameters such as detection of specific antibodies in blood and histochemical detection of villus atrophy and lymphocyte infiltration in intestinal biopsies. To date, no early onset biomarkers are available that would help prevent widespread villous atrophy and severe symptoms and co-morbidities. To search for novel CeD biomarkers, we used single-cell RNA sequencing (scRNAseq) to investigate PBMC samples from 11 children before and after seroconversion for CeD and 10 control individuals matched for age, sex and HLA-genotype. We generated scRNAseq profiles of 9559 cells and identified the expected major cellular lineages. Cell proportions remained stable across the different timepoints and health conditions, but we observed differences in gene expression profiles in specific cell types when comparing patient samples before and after disease development and comparing patients with controls. Based on the time when transcripts were differentially expressed, we could classify the deregulated genes as biomarkers for active CeD or as potential pre-diagnostic markers. Pathway analysis showed that active CeD biomarkers display a transcriptional profile associated with antigen activation in CD4+ T cells, whereas NK cells express a subset of biomarker genes even before CeD diagnosis. Intersection of biomarker genes with CeD-associated genetic risk loci pinpointed genetic factors that might play a role in CeD onset. Investigation of potential cellular interaction pathways of PBMC cell subpopulations highlighted the importance of TNF pathways in CeD. Altogether, our results pinpoint genes and pathways that are altered prior to and during CeD onset, thereby identifying novel potential biomarkers for CeD diagnosis in blood

    Potential impact of celiac disease genetic risk factors on T cell receptor signaling in gluten-specific CD4+ T cells

    Get PDF
    Celiac disease is an auto-immune disease in which an immune response to dietary gluten leads to inflammation and subsequent atrophy of small intestinal villi, causing severe bowel discomfort and malabsorption of nutrients. The major instigating factor for the immune response in celiac disease is the activation of gluten-specific CD4+ T cells expressing T cell receptors that recognize gluten peptides presented in the context of HLA-DQ2 and DQ8. Here we provide an in-depth characterization of 28 gluten-specific T cell clones. We assess their transcriptional and epigenetic response to T cell receptor stimulation and link this to genetic factors associated with celiac disease. Gluten-specific T cells have a distinct transcriptional profile that mostly resembles that of Th1 cells but also express cytokines characteristic of other types of T-helper cells. This transcriptional response appears not to be regulated by changes in chromatin state, but rather by early upregulation of transcription factors and non-coding RNAs that likely orchestrate the subsequent activation of genes that play a role in immune pathways. Finally, integration of chromatin and transcription factor binding profiles suggest that genes activated by T cell receptor stimulation of gluten‑specific T cells may be impacted by genetic variation at several genetic loci associated with celiac disease.</p

    Effect of No Prehydration vs Sodium Bicarbonate Prehydration Prior to Contrast-Enhanced Computed Tomography in the Prevention of Postcontrast Acute Kidney Injury in Adults With Chronic Kidney Disease The Kompas Randomized Clinical Trial

    Get PDF
    Importance Prevention of postcontrast acute kidney injury in patients with stage 3 chronic kidney disease (CKD) by means of prehydration has been standard care for years. However, evidence for the need for prehydration in this group is limited. Objective To assess the renal safety of omitting prophylactic prehydration prior to iodine-based contrast media administration in patients with stage 3 CKD. Design, Setting, and Participants The Kompas trial was a multicenter, noninferiority, randomized clinical trial conducted at 6 hospitals in the Netherlands in which 523 patients with stage 3 CKD were randomized in a 1:1 ratio to receive no prehydration or prehydration with 250 mL of 1.4% sodium bicarbonate administered in a 1-hour infusion before undergoing elective contrast-enhanced computed tomography from April 2013 through September 2016. Final follow-up was completed in September 2017. Data were analyzed from January 2018 to June 2019. Interventions In total, 262 patients were allocated to the no prehydration group and 261 were allocated to receive prehydration. Analysis on the primary end point was available in 505 patients (96.6%). Main Outcomes and Measures The primary end point was the mean relative increase in serum creatinine level 2 to 5 days after contrast administration compared with baseline (noninferiority margin of less than 10% increase in serum creatinine level). Secondary outcomes included the incidence of postcontrast acute kidney injury 2 to 5 days after contrast administration, mean relative increase in creatinine level 7 to 14 days after contrast administration, incidences of acute heart failure and renal failure requiring dialysis, and health care costs. Results Of 554 patients randomized, 523 were included in the intention-to-treat analysis. The median (interquartile range) age was 74 (67-79) years; 336 (64.2%) were men and 187 (35.8%) were women. The mean (SD) relative increase in creatinine level 2 to 5 days after contrast administration compared with baseline was 3.0% (10.5) in the no prehydration group vs 3.5% (10.3) in the prehydration group (mean difference, 0.5; 95% CI, -1.3 to 2.3; P <.001 for noninferiority). Postcontrast acute kidney injury occurred in 11 patients (2.1%), including 7 of 262 (2.7%) in the no prehydration group and 4 of 261 (1.5%) in the prehydration group, which resulted in a relative risk of 1.7 (95% CI, 0.5-5.9; P = .36). None of the patients required dialysis or developed acute heart failure. Subgroup analyses showed no evidence of statistical interactions between treatment arms and predefined subgroups. Mean hydration costs were euro119 (US 143.94)perpatientintheprehydrationgroupcomparedwitheuro0(US143.94) per patient in the prehydration group compared with euro0 (US 0) in the no prehydration group (P <.001). Other health care costs were similar. Conclusions and Relevance Among patients with stage 3 CKD undergoing contrast-enhanced computed tomography, withholding prehydration did not compromise patient safety. The findings of this study support the option of not giving prehydration as a safe and cost-efficient measure

    Loss of p53 triggers Wnt-dependent systemic inflammation to drive breast cancer metastasis

    Get PDF
    Cancer-associated systemic inflammation is strongly linked to poor disease outcome in patients with cancer1,2. For most human epithelial tumour types, high systemic neutrophil-to-lymphocyte ratios are associated with poor overall survival3, and experimental studies have demonstrated a causal relationship between neutrophils and metastasis4,5. However, the cancer-cell-intrinsic mechanisms that dictate the substantial heterogeneity in systemic neutrophilic inflammation between tumour-bearing hosts are largely unresolved. Here, using a panel of 16 distinct genetically engineered mouse models for breast cancer, we uncover a role for cancer-cell-intrinsic p53 as a key regulator of pro-metastatic neutrophils. Mechanistically, loss of p53 in cancer cells induced the secretion of WNT ligands that stimulate tumour-associated macrophages to produce IL-1β, thus driving systemic inflammation. Pharmacological and genetic blockade of WNT secretion in p53-null cancer cells reverses macrophage production of IL-1β and subsequent neutrophilic inflammation, resulting in reduced metastasis formation. Collectively, we demonstrate a mechanistic link between the loss of p53 in cancer cells, secretion of WNT ligands and systemic neutrophilia that potentiates metastatic progression. These insights illustrate the importance of the genetic makeup of breast tumours in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for patients with cancer

    Loss of p53 triggers Wnt-dependent systemic inflammation to drive breast cancer metastasis

    Get PDF
    Cancer-associated systemic inflammation is strongly linked to poor disease outcome in patients with cancer1,2. For most human epithelial tumour types, high systemic neutrophil-to-lymphocyte ratios are associated with poor overall survival3, and experimental studies have demonstrated a causal relationship between neutrophils and metastasis4,5. However, the cancer-cell-intrinsic mechanisms that dictate the substantial heterogeneity in systemic neutrophilic inflammation between tumour-bearing hosts are largely unresolved. Here, using a panel of 16 distinct genetically engineered mouse models for breast cancer, we uncover a role for cancer-cell-intrinsic p53 as a key regulator of pro-metastatic neutrophils. Mechanistically, loss of p53 in cancer cells induced the secretion of WNT ligands that stimulate tumour-associated macrophages to produce IL-1β, thus driving systemic inflammation. Pharmacological and genetic blockade of WNT secretion in p53-null cancer cells reverses macrophage production of IL-1β and subsequent neutrophilic inflammation, resulting in reduced metastasis formation. Collectively, we demonstrate a mechanistic link between the loss of p53 in cancer cells, secretion of WNT ligands and systemic neutrophilia that potentiates metastatic progression. These insights illustrate the importance of the genetic makeup of breast tumours in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for patients with cancer

    Antigen-driven colonic inflammation is associated with development of dysplasia in primary sclerosing cholangitis

    Get PDF
    © The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Primary sclerosing cholangitis (PSC) is an immune-mediated disease of the bile ducts that co-occurs with inflammatory bowel disease (IBD) in almost 90% of cases. Colorectal cancer is a major complication of patients with PSC and IBD, and these patients are at a much greater risk compared to patients with IBD without concomitant PSC. Combining flow cytometry, bulk and single-cell transcriptomics, and T and B cell receptor repertoire analysis of right colon tissue from 65 patients with PSC, 108 patients with IBD and 48 healthy individuals we identified a unique adaptive inflammatory transcriptional signature associated with greater risk and shorter time to dysplasia in patients with PSC. This inflammatory signature is characterized by antigen-driven interleukin-17A (IL-17A)+ forkhead box P3 (FOXP3)+ CD4 T cells that express a pathogenic IL-17 signature, as well as an expansion of IgG-secreting plasma cells. These results suggest that the mechanisms that drive the emergence of dysplasia in PSC and IBD are distinct and provide molecular insights that could guide prevention of colorectal cancer in individuals with PSC.This work was supported by the Leona M. and Harry B. Helmsley Charitable trust (SHARE), the Digestive Diseases Research Core Center C-IID P30 DK42086 at the University of Chicago, the PSC Partners Seeking a Cure Canada and the Sczholtz Family Foundation. K.R.M. is supported by grant no. NS124187. S.C.S. is supported by an American Gastroenterological Association Research Scholar Award, Veterans Affairs Career Development Award (no. ICX002027A01) and the San Diego Digestive Diseases Research Center (no. P30 DK120515). C.Q. is supported by the BBSRC Core Strategic Programme Grant (BB/CSP1720/1, BBS/E/T/000PR9818 and BBS/E/T/000PR9817). I.H.J. is supported by a Rosalind Franklin Fellowship from the University of Groningen and a Netherlands Organization for Scientific Research VIDI grant no. 016.171.047. D.G.S. is supported by grant no. F30DK121470.info:eu-repo/semantics/publishedVersio

    Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs

    Get PDF
    Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases

    Landscape of somatic mutations in 560 breast cancer whole-genome sequences.

    Get PDF
    We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore