26 research outputs found

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs

    Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at √sNN = 2.76 TeV

    No full text
    The first measurement of neutron emission in electromagnetic dissociation of 208Pb nuclei at the LHC is presented. The measurement is performed using the neutron Zero Degree Calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV with neutron emission are σ_single EMD = 187.2±0.2 (stat.) +13.8−12.0 (syst.) b and σ_mutual EMD = 6.2 ± 0.1 (stat.) ±0.4 (syst.) b respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model.The first measurement of neutron emission in electromagnetic dissociation of 208^{208}Pb nuclei at the LHC is presented. The measurement is performed using the neutron Zero Degree Calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at sNN\sqrt{s_{\rm NN}} = 2.76 TeV with neutron emission are σsingle EMD=187.4±0.2\sigma_{\rm single\ EMD} = 187.4\pm0.2 (stat.) 11.2+13.2^{+13.2} _{-11.2} (syst.) b and σmutual EMD=5.7±0.1\sigma_{\rm mutual\ EMD} = 5.7\pm0.1 (stat.) ±\pm0.4 (syst.) b, respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model

    Charge correlations using the balance function in Pb?Pb collisions at ?sNN = 2.76 TeV

    No full text
    In high-energy heavy-ion collisions, the correlations between the emitted particles can be used as a probe to gain insight into the charge creation mechanisms. In this article, we report the first results of such studies using the electric charge balance function in the relative pseudorapidity \Delta\eta and azimuthal angle \Delta\phi in Pb-Pb collisions at sqrt{s_{NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The width of the balance function decreases with growing centrality (i.e. for more central collisions) in both projections. This centrality dependence is not reproduced by HIJING, while AMPT, a model which incorporates strings and parton rescattering, exhibits qualitative agreement with the measured correlations in \Delta\phi but fails to describe the correlations in \Delta\eta. A thermal blast wave model incorporating local charge conservation and tuned to describe the p_T spectra and v_2 measurements reported by ALICE, is used to fit the centrality dependence of the width of the balance function and to extract the average separation of balancing charges at freeze-out. The comparison of our results with measurements at lower energies reveals an ordering with sqrt{s_{NN}}: the balance functions become narrower with increasing energy for all centralities. This is consistent with the effect of larger radial flow at the LHC energies but also with the late stage creation scenario of balancing charges. However, the relative decrease of the balance function widths in \Delta\eta and \Delta\phi with centrality from the highest SPS to the LHC energy exhibits only small differences. This observation cannot be interpreted solely within the framework where the majority of the charge is produced at a later stage in the evolution of the heavy-ion collision
    corecore