752 research outputs found
Prospectus, September 26, 1985
https://spark.parkland.edu/prospectus_1985/1019/thumbnail.jp
The Milky Way Tomography With SDSS. III. Stellar Kinematics
We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator
The Milky Way Tomography with SDSS: III. Stellar Kinematics
We study Milky Way kinematics using a sample of 18.8 million main-sequence
stars with r<20 and proper-motion measurements derived from SDSS and POSS
astrometry, including ~170,000 stars with radial-velocity measurements from the
SDSS spectroscopic survey. Distances to stars are determined using a
photometric parallax relation, covering a distance range from ~100 pc to 10 kpc
over a quarter of the sky at high Galactic latitudes (|b|>20 degrees). We find
that in the region defined by 1 kpc <Z< 5 kpc and 3 kpc <R< 13 kpc, the
rotational velocity for disk stars smoothly decreases, and all three components
of the velocity dispersion increase, with distance from the Galactic plane. In
contrast, the velocity ellipsoid for halo stars is aligned with a spherical
coordinate system and appears to be spatially invariant within the probed
volume. The velocity distribution of nearby ( kpc) K/M stars is complex,
and cannot be described by a standard Schwarzschild ellipsoid. For stars in a
distance-limited subsample of stars (<100 pc), we detect a multimodal velocity
distribution consistent with that seen by HIPPARCOS. This strong
non-Gaussianity significantly affects the measurements of the velocity
ellipsoid tilt and vertex deviation when using the Schwarzschild approximation.
We develop and test a simple descriptive model for the overall kinematic
behavior that captures these features over most of the probed volume, and can
be used to search for substructure in kinematic and metallicity space. We use
this model to predict further improvements in kinematic mapping of the Galaxy
expected from Gaia and LSST.Comment: 90 pages, 26 figures, submitted to Ap
PrP(Sc)-specific antibodies with the ability to immunodetect prion oligomers.
The development of antibodies with binding capacity towards soluble oligomeric forms of PrPSc recognised in the aggregation process in early stage of the disease would be of paramount importance in diagnosing prion diseases before extensive neuropathology has ensued. As blood transfusion appears to be efficient in the transmission of the infectious prion agent, there is an urgent need to develop reagents that would specifically recognize oligomeric forms of the abnormally folded prion protein, PrPSc.To that end, we show that anti-PrP monoclonal antibodies (called PRIOC mAbs) derived from mice immunised with native PrP-coated microbeads are able to immunodetect oligomers/multimers of PrPSc. Oligomer-specific immunoreactivity displayed by these PRIOC mAbs was demonstrated as large aggregates of immunoreactive deposits in prion-permissive neuroblastoma cell lines but not in equivalent non-infected or prn-p(0/0) cell lines. In contrast, an anti-monomer PrP antibody displayed diffuse immunoreactivity restricted to the cell membrane. Furthermore, our PRIOC mAbs did not display any binding with monomeric recombinant and cellular prion proteins but strongly detected PrPSc oligomers as shown by a newly developed sensitive and specific ELISA. Finally, PrioC antibodies were also able to bind soluble oligomers formed of AÎČ and α-synuclein. These findings demonstrate the potential use of anti-prion antibodies that bind PrPSc oligomers, recognised in early stage of the disease, for the diagnosis of prion diseases in blood and other body fluids
Introductory programming: a systematic literature review
As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming.
This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research
The Astropy Problem
The Astropy Project (http://astropy.org) is, in its own words, "a community
effort to develop a single core package for Astronomy in Python and foster
interoperability between Python astronomy packages." For five years this
project has been managed, written, and operated as a grassroots,
self-organized, almost entirely volunteer effort while the software is used by
the majority of the astronomical community. Despite this, the project has
always been and remains to this day effectively unfunded. Further, contributors
receive little or no formal recognition for creating and supporting what is now
critical software. This paper explores the problem in detail, outlines possible
solutions to correct this, and presents a few suggestions on how to address the
sustainability of general purpose astronomical software
Mucosal Immunization of Cynomolgus Macaques with the VSVÎG/ZEBOVGP Vaccine Stimulates Strong Ebola GP-Specific Immune Responses
(ZEBOV) produces a lethal viral hemorrhagic fever in humans and non-human primates.We demonstrate that the VSVÎG/ZEBOVGP vaccine given 28 days pre-challenge either intranasally (IN), orally (OR), or intramuscularly (IM) protects non-human primates against a lethal systemic challenge of ZEBOV, and induces cellular and humoral immune responses. We demonstrated that ZEBOVGP-specific T-cell and humoral responses induced in the IN and OR groups, following an immunization and challenge, produced the most IFN-Îł and IL-2 secreting cells, and long term memory responses.We have shown conclusively that mucosal immunization can protect from systemic ZEBOV challenge and that mucosal delivery, particularly IN immunization, seems to be more potent than IM injection in the immune parameters we have tested. Mucosal immunization would be a huge benefit in any emergency mass vaccination campaign during a natural outbreak, or following intentional release, or for mucosal immunization of great apes in the wild
The Milky Way Tomography with SDSS: II. Stellar Metallicity
Using effective temperature and metallicity derived from SDSS spectra for
~60,000 F and G type main sequence stars (0.2<g-r<0.6), we develop polynomial
models for estimating these parameters from the SDSS u-g and g-r colors. We
apply this method to SDSS photometric data for about 2 million F/G stars and
measure the unbiased metallicity distribution for a complete volume-limited
sample of stars at distances between 500 pc and 8 kpc. The metallicity
distribution can be exquisitely modeled using two components with a spatially
varying number ratio, that correspond to disk and halo. The two components also
possess the kinematics expected for disk and halo stars. The metallicity of the
halo component is spatially invariant, while the median disk metallicity
smoothly decreases with distance from the Galactic plane from -0.6 at 500 pc to
-0.8 beyond several kpc. The absence of a correlation between metallicity and
kinematics for disk stars is in a conflict with the traditional decomposition
in terms of thin and thick disks. We detect coherent substructures in the
kinematics--metallicity space, such as the Monoceros stream, which rotates
faster than the LSR, and has a median metallicity of [Fe/H]=-0.96, with an rms
scatter of only ~0.15 dex. We extrapolate our results to the performance
expected from the Large Synoptic Survey Telescope (LSST) and estimate that the
LSST will obtain metallicity measurements accurate to 0.2 dex or better, with
proper motion measurements accurate to ~0.2 mas/yr, for about 200 million F/G
dwarf stars within a distance limit of ~100 kpc (g<23.5). [abridged]Comment: 40 pages, 21 figures, emulateApJ style, accepted to ApJ, high
resolution figures are available from
http://www.astro.washington.edu/ivezic/sdss/mw/astroph0804.385
Stem End Blockage in Cut Grevillea 'Crimson Yul-lo' Inflorescences
Grevillea Crimson Yul-lo inflorescences have cut flower potential, but their vase life is short. End of vase life is characterised by early wilting. The possibility of physiologically mediated stem end blockage was investigated. Hydraulic conductance of 2 cm long stem end segments declined rapidly and remained lower throughout vase life than that of 2 cm long stem segments from immediately above. Re-cutting daily to remove basal 2 cm stem ends increased solution uptake, delayed declines in inflorescence water potential and water content, and improved inflorescence vase life. S-Carvone is a potential inhibitor of wound related suberin formation, via inhibition of phenylalanine ammonia-lyase, and vase solution treatments with S-carvone (0.318 and 0.636 mM) delayed the decline in hydraulic conductance of basal 2 cm long stem end segments and decreases in vase solution uptake and relative fresh weight of cut stems, and extended vase life. Treatments with the catechol oxidase inhibitor 4-hexylresorcinol (2.5-10 mM) also delayed stem end blockage. These findings suggest that stem end blockage in cut G. Crimson Yul-lo stems is physiologically mediated
Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger.
The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of Îł-rays, a gravitational-wave signal, and a transient optical-near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process). Such transients, named 'macronovae' or 'kilonovae', are believed to be centres of production of rare elements such as gold and platinum. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short Îł-ray burst at redshift zâ=â0.356, although findings indicating bluer events have been reported. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational-wave source GW170817 and Îł-ray burst GRB 170817A associated with a galaxy at a distance of 40 megaparsecs from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum, indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03 to 0.05 solar masses of material, including high-opacity lanthanides
- âŠ