2,842 research outputs found

    Benthic megafauna on steep slopes at the Northern Mid-Atlantic Ridge

    Get PDF
    The role of smallā€scale (<10 km) habitat availability in structuring deepā€sea hard substratum assemblages is poorly understood. Epibenthic megafauna and substratum availability were studied on steep slopes at the Midā€Atlantic Ridge from May to July 2010 northwest, northeast, southwest and southeast of the Charlieā€Gibbs Fracture Zone (CGFZ; 48ā€“54Ā°N) at between 2095 and 2601 m depth. Megafauna were six times denser north of the CGFZ compared with the south and differences in density were almost entirely driven by sessile fauna. There was no significant difference in habitat availability amongst sites. Rocky substratum made up 48% of the total area surveyed, with individual transects having between 0% and 82% rock. Assemblage structures were different amongst all superstations. The north was dominated by demospongids and hexactinellids, whereas the southern superstations were dominated by anthozoans and hexactinellids. Differences in megafaunal assemblages north and south of the CGFZ primarily reflected variations in demospongid and anthozoan species composition. With 213ā€“1825 individualsĀ·haāˆ’1, and 7ā€“24 species per superstation, hexactinellids were the most speciesā€rich (36 species) and cosmopolitan taxa at the study site, supporting observations elsewhere along the ridge and in the CGFZ. The absence of significant differences in substrata availability suggested alternative drivers for density or percentage cover. The amount of hard substratum available only limited sessile megafauna density at one transect that was entirely covered with sediments. Species richness was highest for areas with intermediate values of substratum coverage (35ā€“43% rock)

    Mining Deep-Ocean Mineral Deposits: What are the Ecological Risks?

    Get PDF
    A key question for the future management of the oceans is whether the mineral deposits that exist on the seafloor of the deep ocean can be extracted without significant adverse effects to the environment. The potential impacts of mining are wide-ranging and will vary depending on the type of metal-rich mineral deposit being mined. There is, currently, a significant lack of information about deep-ocean ecosystems and about potential mining technologies: thus, there could be many unforeseen impacts. Here, we discuss the potential ecological impacts of deep-ocean mining and identify the key knowledge gaps to be addressed. Baseline studies must be undertaken, as well as regular monitoring of a mine area, before, during, and after mineral extraction

    Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs

    Get PDF
    Jellyfish blooms are common in many oceans, and anthropogenic changes appear to have increased their magnitude in some regions. Although mass falls of jellyfish carcasses have been observed recently at the deep seafloor, the dense necrophage aggregations and rapid consumption rates typical for vertebrate carrion have not been documented. This has led to a paradigm of limited energy transfer to higher trophic levels at jelly falls relative to vertebrate organic falls. We show from baited camera deployments in the Norwegian deep sea that dense aggregations of deep-sea scavengers (more than 1000 animals at peak densities) can rapidly form at jellyfish baits and consume entire jellyfish carcasses in 2.5 h. We also show that scavenging rates on jellyfish are not significantly different from fish carrion of similar mass, and reveal that scavenging communities typical for the NE Atlantic bathyal zone, including the Atlantic hagfish, galatheid crabs, decapod shrimp and lyssianasid amphipods, consume both types of carcasses. These rapid jellyfish carrion consumption rates suggest that the contribution of gelatinous material to organic fluxes may be seriously underestimated in some regions, because jelly falls may disappear much more rapidly than previously thought. Our results also demonstrate that the energy contained in gelatinous carrion can be efficiently incorporated into large numbers of deep-sea scavengers and food webs, lessening the expected impacts (e.g. smothering of the seafloor) of enhanced jellyfish production on deep-sea ecosystems and pelagicā€“benthic coupling

    Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea

    Get PDF
    Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000ā€‰m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200ā€‰m depth) and bathyal (200ā€“4000ā€‰m depth) holothurians, but was significantly lower in abyssal (greater than 4000ā€‰m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes

    Geomorphological evidence of large vertebrates interacting with the seafloor at abyssal depths in a region designated for deep-sea mining

    Get PDF
    Exploration licences for seafloor mineral deposits have been granted across large areas of the world's oceans, with the abyssal Pacific Ocean being the primary target for polymetallic nodulesā€”a potentially valuable source of minerals. These nodule-bearing areas support a large diversity of deep-sea life and although studies have begun to characterize the benthic fauna within the region, the ecological interactions between large bathypelagic vertebrates of the open ocean and the abyssal seafloor remain largely unknown. Here we report seafloor geomorphological alterations observed by an autonomous underwater vehicle that suggest large vertebrates could have interacted with the seafloor to a maximum depth of 4258 m in the recent geological past. Patterns of disturbance on the seafloor are broadly comparable to those recorded in other regions of the world's oceans attributed to beaked whales. These observations have important implications for baseline ecological assessments and the environmental management of potential future mining activities within this region of the Pacific

    Detecting the effects of deep-seabed nodule mining: simulations using Megafaunal Data From the Clarion-Clipperton Zone

    Get PDF
    The International Seabed Authority (ISA) is in the process of preparing exploitation regulations for deep-seabed mining (DSM). DSM has the potential to disturb the seabed over wide areas, yet there is little information on the ecological consequences, both at the site of mining and surrounding areas where disturbance such as sediment smothering could occur. Of critical regulatory concern is whether the impacts cause ā€œserious harmā€ to the environment. Using metazoan megafaunal data from the Clarion-Clipperton Zone (northern equatorial Pacific), we simulate a range of disturbances from very low to severe, to determine the effect on community-level metrics. Two kinds of stressors were simulated: one that impacts organisms based on their affinity to nodules, and another that applies spatially stochastic stress to all organisms. These simulations are then assessed using power analysis to determine the amount of sampling required to distinguish the disturbances. This analysis is limited to modelling lethal impacts on megafauna. It provides a first indication of the effect sizes and ecological nature of mining impacts that might be expected across a broader range of taxa. To detect our simulated ā€œtipping point,ā€ power analyses suggest impact monitoring samples should each have at least 500ā€“750 individual megafauna; and at least five such samples, as well as control samples should be assessed. In the region studied, this translates to approximately 1500ā€“2300 m2 seabed per impact monitoring sample, i.e., 7500ā€“11,500 m2 in total for a given location and/or habitat. Detecting less severe disturbances requires more sampling. The numerical density of individuals and Pielouā€™s evenness of communities appear most sensitive to simulated disturbances and may provide suitable ā€œearly warningā€ metrics for monitoring. To determine the sampling details for detecting the desired threshold(s) for harm, statistical effect sizes will need to be determined and validated. The determination of what constitutes serious harm is a legal question that will need to consider socially acceptable levels of long-term harm to deep-sea life. Monitoring details, data, and results including power analyses should be made fully available, to facilitate independent review and informed policy discussions

    Environmental heterogeneity throughout the clarion-clipperton zone and the potential representativity of the APEI network

    Get PDF
    Environmental variables such as food supply, nodule abundance, sediment characteristics, and water chemistry may influence abyssal seafloor communities and ecosystem functions at scales from meters to thousands of kilometers. Thus, knowledge of environmental variables is necessary to understand drivers of organismal distributions and community structure, and for selection of proxies for regional variations in community structure, biodiversity, and ecosystem functions. In October 2019, the Deep CCZ Biodiversity Synthesis Workshop was conducted to (i) compile recent seafloor ecosystem data from the Clarion-Clipperton Zone (CCZ), (ii) synthesize patterns of seafloor biodiversity, ecosystem functions, and potential environmental drivers across the CCZ, and (iii) assess the representativity of no-mining areas (Areas of Particular Environmental Interest, APEIs) for subregions and areas in the CCZ targeted for polymetallic nodule mining. Here we provide a compilation and summary of water column and seafloor environmental data throughout the CCZ used in the Synthesis Workshop and in many of the papers in this special volume. Bottom-water variables were relatively homogenous throughout the region while nodule abundance, sediment characteristics, seafloor topography, and particulate organic carbon flux varied across CCZ subregions and between some individual subregions and their corresponding APEIs. This suggests that additional APEIs may be needed to protect the full range of habitats and biodiversity within the CCZ

    Genetic Classification of Populations using Supervised Learning

    Get PDF
    There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case--control studies and quality control (when participants in a study have been genotyped at different laboratories). This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed \emph{unsupervised}. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available. In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines) to the classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.Comment: Accepted PLOS On

    Short-term response of deep-water benthic megafauna to installation of a pipeline over a depth gradient on the Angolan Slope

    Get PDF
    Large structures are introduced into deep-water marine environments by several industrial activities, including hydrocarbon exploitation. Anthropogenic structures can alter ecosystem structure and functioning in many marine ecosystems but the responses on continental margins are poorly known. Here, we investigate the short-term response of benthic megafauna to the installation of a 56 km-long 30 cm diameter pipeline on the Angolan Margin (Block 31) from 700 to 1800 m water depth using remotely operated vehicle imagery. Clear depth-related patterns exist in the density, diversity and community structure of megafauna observed in 2013 prior to pipeline installation. These patterns are altered in a subsequent survey in 2014, three-months after pipeline installation. Significant increases in density, particularly in mid-slope regions are observed. Diversity is generally, but not consistently, enhanced, particularly in the shallower areas in 2014. Clear changes are noted in community structure between years. These changes are primarily caused by increases in the abundance of echinoderms, particularly the echinoid Phormosoma sp. indet. There was no evidence of colonisation of the pipeline in three months by visible fauna. The few large anemones observed attached to the pipe may be able to move as adults. The pipeline appeared to trap organic material and anthropogenic litter, and may enhance available food resources locally as well as providing hard substratum. These results indicate complex and ecosystem-dependent responses to structure installation and caution against simplistic approaches to environmental management

    Preliminary observations of the Abyssal Megafauna of Kiribati

    Get PDF
    We report on preliminary observations of the abyssal megafauna communities in the exclusive economic zone of Kiribati, a huge abyssal area with few previous studies. These observations also provide useful context for marine minerals exploration within the exclusive economic zone (EEZ) and for the neighboring Clarion Clipperton Zone (CCZ), where deep-sea mining operations are planned. Seafloor images collected during seabed mining exploration were used to characterize megafaunal communities (fauna > 1 cm) in three abyssal plain areas in the eastern Kiribati EEZ (study area extending from 1 to 5Ā°N and 173 to 156Ā°W). Additionally, hydrographic features in each of the survey locations were inferred by reference to near-seabed current flows modeled using open-sourced oceanographic data. The images showed a dominance of foraminiferal organisms. Metazoan communities were high in morphospecies richness but had low density. These general patterns were comparable to abyssal megabenthic communities in the CCZ. There was evidence of spatial variation between the assemblages in Kiribati, but there was a relatively large pool of shared morphospecies across the entire study area. Low metazoan density limited detailed assessment of spatial variation and diversity at local scales. This finding is instructive of the levels of sampling effort required to determine spatial patterns in low density abyssal communities. The results of this study are preliminary observations that will be useful to guide future biological survey design and marine spatial planning strategies
    • ā€¦
    corecore