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Jellyfish blooms are common in many oceans, and anthropogenic changes

appear to have increased their magnitude in some regions. Although mass

falls of jellyfish carcasses have been observed recently at the deep seafloor,

the dense necrophage aggregations and rapid consumption rates typical for

vertebrate carrion have not been documented. This has led to a paradigm

of limited energy transfer to higher trophic levels at jelly falls relative to ver-

tebrate organic falls. We show from baited camera deployments in the

Norwegian deep sea that dense aggregations of deep-sea scavengers (more

than 1000 animals at peak densities) can rapidly form at jellyfish baits and

consume entire jellyfish carcasses in 2.5 h. We also show that scavenging

rates on jellyfish are not significantly different from fish carrion of similar

mass, and reveal that scavenging communities typical for the NE Atlantic

bathyal zone, including the Atlantic hagfish, galatheid crabs, decapod

shrimp and lyssianasid amphipods, consume both types of carcasses. These

rapid jellyfish carrion consumption rates suggest that the contribution of gela-

tinous material to organic fluxes may be seriously underestimated in some

regions, because jelly falls may disappear much more rapidly than previously

thought. Our results also demonstrate that the energy contained in gelatinous

carrion can be efficiently incorporated into large numbers of deep-sea scaven-

gers and food webs, lessening the expected impacts (e.g. smothering of the

seafloor) of enhanced jellyfish production on deep-sea ecosystems and

pelagic–benthic coupling.

provided by NERC Open Researc
1. Introduction
Gelatinous zooplankton are common worldwide, constituting a total biomass

in the ocean of 38.3 Tg C [1]. While recent meta-analyses show that numerous

areas experience recurrent oscillations in jellyfish blooms (lasting approx.

20 years) [2], there are indications that ocean warming, over-fishing,

aquaculture, eutrophication and coastal development are causing increased

gelatinous zooplankton populations in many other regions [3–6]. This has

caused researchers to project fundamental shifts in the biological structure

and biogeochemical functioning of affected marine ecosystems, with significant

environmental, societal and economic implications (such as negative effects on

pelagic and benthic food webs, reductions in fisheries production and reduced

tourism) [4,7,8].

Gelatinous zooplankton efficiently incorporate C and N from pelagic pri-

mary producers and secondary consumers into gelatinous biomass [9,10].

Many species are able to form large blooms that can die off episodically. As gela-

tinous zooplankton carcasses have high sinking speeds (1500 m d21, [11]), they

are capable of rapidly transporting nutrients from the pelagic zone to the deep

sea [12–14]. Gelatinous zooplankton carcasses ( jelly falls) from overlying
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blooms are known to accumulate at the seafloor as both small

and large deposits, where they can enrich seafloor sediments

in organic carbon, reduce sediment oxygen levels through

smothering and alter benthic biogeochemical cycles [12–15].

Scavengers play a vital role in deep-sea ecosystems, deriving

and distributing nutrients from energy-rich animal carcasses,

such as dead mammals and fishes, as well as more refractory

plant matter [16–19]. While some limited observations exist of

some scavengers consuming jelly falls [13], many studies

report little to no scavenging [12,13,15,20–22]. Moreover, the

rapid scavenging activity and dense aggregations of scaven-

gers typical for other forms of carrion and organic material

(including dead fishes, whales and plant material) have

never been documented at jelly falls. This has led to the

paradigm that scavenging on jellyfish carcasses is limited

compared with other types of carrion, although no direct

scavenging studies have ever been carried out.

Here, we directly evaluated the response of deep-sea sca-

vengers to jellyfish carcasses using the cosmopolitan coronate

jellyfish species Periphylla periphylla as bait. P. periphylla is

found at mesopelagic depths in several oceanic regions, includ-

ing the North Atlantic and Gulf of Mexico [23,24], can form

intense blooms [23], and sinks to the seafloor upon death

[20]. To assess whether the scavenging responses seen using

P. periphylla carcasses were typical for other jellyfish species,

we also performed lander experiments using Cyanea capillata
(a common scyphomedusae found in northern and southern

European waters and in the North Atlantic) as bait. Scavenging

of jellyfish carcasses was directly compared with scavenging

of similar masses of Scomber scombrus (mackerel), a widely

distributed pelagic fish. Experiments were conducted with ran-

domized deployments of identically baited time-lapse camera

landers at 1250 m depth in the Sognefjorden, Norway (see

the electronic supplementary material, figure S1).
2. Material and methods
(a) Field study
To quantitatively assess scavenging on jellyfish carcasses at the

deep-sea floor, baited camera deployments were conducted

over a two-week period in October 2012 at a water depth of

1250 m in the Sognefjorden, Norway (see the electronic sup-

plementary material, figure S1). A randomized sampling

design was used in which 14 lander deployments of two iden-

tical landers were made at randomly selected stations along the

central axis of the fjord (see the electronic supplementary

material, figure S1). Landers were deployed at least 2 km

apart to reduce interactions from bait odour plumes that,

based on seafloor current measurements, would travel a maxi-

mum of 100 m over an experimental period of 18 h. Landers

were designed to minimize flow artefacts associated with the

frames. Each lander was equipped with an Ocean Imaging

Systems camera and strobe system (camera settings: ISO 200,

f-stop 8.0 and a 1/25–1/60s exposure). Two different jellyfish

species (P. periphylla and C. capillata) and a fish (S. scombrus)
were used as bait in the experiments. P. periphylla jellyfish

were initially caught in September 2010 at 400 m depth in Lur-

efjorden, western Norway (060841.7N; 005808.5E) using a

MOCNESS system and then frozen. These jellyfish were

thawed before deploying as bait on four separate lander

deployments. Freshly sampled P. periphylla were also used as

bait on four different lander deployments. These were collected
in the Lurefjorden in October 2012 by dip-net sampling at

night. C. capillata were collected in the summer of 2010 by a

dip-net in Vestrepolen, western Norway and frozen. Thawed

C. capillata baits were deployed on each camera lander once

(n ¼ 2 deployments). Intact S. scombrus were purchased

frozen from a local fisherman in October 2012 and deployed

four separate times in a thawed condition on the camera land-

ers. Prior to deployment, all baits were standardized to 316+
10 g wet weight (mean+ standard error, n ¼ 14) and cable-

tied to a bait plate situated 1.5 m in front of each camera. To

standardize the odour plume from the thawed baits, each jelly-

fish bait deployment comprised five to six jellyfish, whereas

fish bait deployments were made up of a single mackerel

cut up into five to six sections that were identical in size to

each thawed jellyfish. Baited landers were deployed at the

seafloor for 18 h with photographs taken every 2.5 min.

After 18 h on the seafloor, each lander was recalled to the sur-

face, and the photographs downloaded to a computer.

Environmental characteristics at the seafloor were measured

on three lander deployments using a small Aanderaa Sea-

guard RCM acoustic single point current meter with

oxygen, conductivity and temperature sensors attached to

one of the lander systems. Bottom waters were well oxyge-

nated (204+0.1 mmol l21, mean+ s.e., n ¼ 3), and had a

temperature and salinity of 7.4+4 � 1025 8C (mean+ s.e.,

n ¼ 3) and 35+3.8 � 1024 (mean+ s.e., n ¼ 3), respectively.

To later identify scavengers attending each bait in the baited

camera photographs, traps baited with fish and jellyfish

baits were deployed twice at 1250 m depth for 3 h.

(b) Analysis of scavenger abundances in photographs
We assessed the abundance of each scavenger type at each

bait every 5 min over each 18 h lander deployment. To do

this, all Myxine glutinosa (Atlantic hagfish), Munida tenuimana
(galatheid crab) and decapod shrimp attending the bait

(defined as on the bait plate) were counted in every second

photograph using the cell-counter plugin in IMAGEJ (v. 1.44,

National Institute of Health). This plugin allowed annotation

of each image, which facilitated quality control. Owing to the

large abundances of Orchomenella obtusa (lysianassid amphi-

pod) in each image, the maximum abundance and time of

maximum abundance of O. obtusa were estimated through

time for each deployment using a custom-built macro in

IMAGEJ to estimate the area of amphipods, and linear

regression modelling to calibrate the ‘amphipod area’ against

abundances measured in randomly selected images (see the

electronic supplementary material, Methods).

(c) Analyses of scavenging rates and bait removal times
Wet-weight consumption rates of the baits were determined

from the wet weight of the carcass and the time between the

arrival of the lander at the seafloor and the disappearance of

the tissue of the bait from view (i.e. removal time). Owing to

the large abundance of amphipods on the S. scombrus baits,

which partially obscured the view of the bait, the scaveng-

ing data calculated from the S. scombrus treatments are the

maximum consumption rates and minimum removal times.

The concentrations of carbon, nitrogen and gross energy

(GE) in each bait type were determined using standard

carbon, hydrogen, nitrogen and bomb-calorimetry analysis at

a commercial laboratory (NOFIMA, Bergen, Norway). These

data were used together with the wet weight of the baits
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Figure 1. Mean number of scavengers in the S. scombrus (a), P. periphylla (thawed and fresh) (b and c, respectively) and C. capillata (d ) experiments as a function of time
at the seafloor. Black lines and grey shading denote mean number of M. glutinosa+ 95% CIs; red line and shading denote mean number of M. tenuimana+ 95% CIs,
and blue line and shading denote mean number of decapod shrimp+ 95% CIs. Note different y-axis scales.
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and removal times to calculate the rates of C, N (g d21) and GE

consumption (kJ d21).

(d) Statistical analysis
To ensure a balanced statistical design, scavenging metrics (e.g.

maximum abundance of scavengers, bait consumption rates)

were only compared statistically between the P. periphylla and

S. scombrus treatments (n ¼ 4 for each treatment). Differences

in the maximum abundance of M. glutinosa, M. tenuimana and

decapod shrimp scavengers in the P. periphylla and S. Scombrus
experiments were analysed using generalized-linear models

(GLMs) based on Poisson distributions, or quasi-Poisson distri-

butions if datasets were overdispersed. Because the maximum

number of O. obtusa in each experiment was modelled and

datasets contained no zero values, significant differences in

the maximum abundance of O. obtusa in the S. scombrus and

P. periphylla experiments were assessed using a parametric

ANOVA test. The time of maximum abundance for each

scavenger was compared across baits using ANOVA or non-

parametric analogues if datasets failed to meet parametric
assumptions. Removal times, and wet weight, C, N and GE

consumption rates were compared between treatment types

using ANOVA, or non-parametric Kruskal–Wallis tests if data-

sets were non-normal and/or heteroscedastic. An alpha level

of 0.05 was chosen as the criterion for statistical significance.

All data were analysed using the computer programming

language R [25].
3. Results
In our experiments, the scavenger response to thawed and fresh

P. periphylla and thawed S. scombrus carcasses was extremely

rapid, with the first scavengers arriving in large numbers

within minutes of the landers reaching the seafloor (figures 1

and 2; see the electronic supplementary material, movies

S1–S3). All bait treatments attracted the same diverse scavenger

assemblage typical of the NE Atlantic bathyal zone, includ-

ing the Atlantic hagfish, M. glutinosa; the galatheid crab,

M. tenuimana; the lysianassid amphipod O. obtusa; as well as

an unidentified decapod shrimp (likely Pontophilus norvegicus;
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Figure 2. Estimated mean number of Orchomenella obtusa in the S. scombrus (a), P. periphylla (thawed and fresh) (b and c, respectively) and C. capillata (d )
experiments as a function of time at the seafloor. Black lines and grey shading denote mean number+ 95% CIs.

Table 1. Maximum number of scavengers (mean+ s.e.) and the time (mean+ s.e.) at which the maximum abundance was reached at the different baits
(min). The number of replicates (n) totals 4 for the P. periphylla and S. scombrus treatments, and 2 for the C. capillata treatment.

bait scavenger

maximum number time of maximum number (min)

mean s.e. mean s.e.

S. scombrus (thawed) M. glutinosa 29.5 3.5 115.0 61.2

M. tenuimana 2.0 1.0 238.8 129.2

O. obtusa 1609.5 273.5 712.5 108.2

decapod shrimp 1.3 0.6 118.1 92.9

P. periphylla (thawed) M. glutinosa 12.8 2.6 102.5 36.0

M. tenuimana 3.5 0.3 286.3 121.8

O. obtusa 2024.7 1135.9 623.8 257.0

decapod shrimp 9.0 3.1 781.3 238.9

P. periphylla (fresh) M. glutinosa 6.3 0.9 193.8 67.1

M. tenuimana 5.8 0.9 218.8 35.3

O. obtusa 1136.7 361.0 501.3 68.0

decapod shrimp 6.5 2.3 570.6 194.5

C. capillata (thawed) M. glutinosa 1.0 0.0 610.0 142.5

M. tenuimana 5.0 1.0 600.0 37.5

O. obtusa 1625.5 282.3 1272.5 4.3

decapod shrimp 6.0 3.0 867.5 100.0
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figures 1a–c and 2a–c and table 1). In terms of scavenger num-

bers, the maximum abundance of M. glutinosa was significantly

higher (116–760%) in the S. scombrus treatments than in the

P. periphylla jellyfish experiments (GLM, p , 0.0001, figure 1a–c
and table 1; see the electronic supplementary material,

table S3). However, lysianassid amphipods were by far the

most abundant scavengers in both the P. periphylla and

S. scombrus experiments, and attained statistically similar



Table 2. Mean bait removal times (+s.e., n ¼ 4) and wet weight, C, N and gross energy (GE) consumption rates (+s.e., n ¼ 4) calculated for the different
baits. The removal time was the time between the lander arriving at the seafloor and the time when no more bait was visible on the bait plate. Consumption
rates were calculated from the known wet weight, C, N and energy content of the baits (derived from the wet weight of the bait and C, N and GE content per
unit wet weight) and the removal times. p-values from statistical tests are shown and treatments that differed significantly ( p , 0.05) are shown in the
significant multiple comparisons row.

removal time
(min)

wet-weight
consumption (g d21)

C consumption
(g C d21)

N consumption
(g N d21)

energy consumption
(kJ d21)

statistical test ANOVA Kruskal – Wallis Kruskal – Wallis Kruskal – Wallis Kruskal – Wallis

statistical results f2,9 ¼ 0.788

p ¼ 0.488

x2
2 ¼ 3:231

p ¼ 0.199

x2
2 ¼ 9:846

p ¼ 0.007

x2
2 ¼ 9:846

p ¼ 0.007

x2
2 ¼ 9:846

p ¼ 0.007

significant multiple

comparisons

S. scombrus . P.

periphylla (fresh)

S. scombrus . P.

periphylla (fresh)

S. scombrus . P.

periphylla (fresh)

bait treatment

S. scombrus 421.9+ 102.8 1388.3+ 328.6 233.3+ 55.2 39.0+ 9.2 11413.3+ 2701.6

P. periphylla (thawed) 288.8+ 80.5 1934.6+ 464.0 48.5+ 11.6 8.7+ 2.1 2107.4+ 505.5

P. periphylla (fresh) 395.6+ 46.0 1124.8+ 290.0 6.7+ 1.7 1.3+ 0.3 278.8+ 71.9
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maximum densities (ANOVA test, p ¼ 0.602) in both the two

P. periphylla and S. scombrus experiments (figure 2a–c and

table 1; see the electronic supplementary material, table S3).

The maximum abundance of decapod shrimp was significantly

higher in both the thawed and fresh P. periphylla compared with

the mackerel experiments (GLM, p ¼ 0.009, figure 1a–c and

table 1; see the electronic supplementary material, table S3).

Significantly higher maximum abundances of M. tenuimana
were also found in the fresh P. periphylla experiments compared

with at the mackerel bait (GLM, p ¼ 0.012, figure 1a–c and

table 1; see the electronic supplementary material, table S3).

Our experiments indicated somewhat different patterns of

scavenger succession in the jellyfish versus mackerel exper-

iments. In the mackerel experiments, two waves of

scavengers were identified: a rapid increase in M. glutinosa
abundance followed by a broad peak in O. obtusa for the dur-

ation of the 18-h experiments (figures 1a and 2a). By contrast,

three waves of scavengers were observed in the P. periphylla
experiments: hagfish abundance peaked quickly and then

declined after approximately 3.5 h (figure 1b–c); as hagfish

declined, M. tenuimana and O. obtusa increased in numbers

at the bait plate, most likely feeding on small pieces of jelly-

fish tissue left over from ‘sloppy feeding’ by hagfish (figures

1b–c and 2b–c); finally, after 7–10 h, decapod shrimp

increased in abundance (figure 1b–c). The time when scaven-

gers reached their maximum abundance was not significantly

different between treatments (table 1 and see the electronic

supplementary material, table S3).

An analysis of the removal times of the different baits

revealed no significant difference across treatments (ANOVA

test, p ¼ 0.488; table 2). Assuming a linear loss of material

through time, mean wet-weight consumption rates of the differ-

ent baits showed no statistically significant difference between

any treatment (Kruskal–Wallis test, p ¼ 0.199; table 2).

In order to assess the importance of the jellyfish to the sca-

venger food web, we converted all wet-weight consumption

rate data into C, N and GE consumption rates (table 2). We

observed significantly lower rates of C, N and GE uptake

into the scavenger food web in the fresh P. periphylla exper-

iments relative to the S. scombrus studies (Kruskal–Wallis
test, p ¼ 0.007, table 2). However, no significant difference in

C, N and energy consumption rates was detected between

the thawed P. periphylla and S. scombrus treatments ( p . 0.05,

table 2), although the non-parametric statistical test used was

conservative. This suggests that freezing and thawing of jelly-

fish carrion may increase C, N and energy consumption rates,

perhaps by rupturing cells and enhancing the release of olfac-

tory cues. The higher C, N and energy consumption rates in

the fish relative to the fresh P. periphylla experiments was

most likely caused by the significantly higher abundance of

M. glutinosa at the mackerel bait (figure 1a and table 1; see

the electronic supplementary material, table S3) responding

to the 29- to 40-fold higher C, N and GE content in mackerel

compared with fresh P. periphylla (C: 56.8+0.8 versus 1.7+
0.2 g C (mean+ s.e., n ¼ 4); N: 9.5+0.1 versus 0.3+0.0 g N

(mean+ s.e., n ¼ 4); GE: 2778.7+37.4 versus 69.9+7.0 kJ

(mean+ s.e., n ¼ 4) for S. scombrus and fresh P. periphylla
treatments, respectively).

The scavenger responses to C. capillata were within the

range of that for fresh P. periphylla (table 2). The mean bait

removal time for C. capillata was 803.8+321.3 min (mean+
range, n ¼ 2), which corresponded to a wet-weight con-

sumption rate of 713.7+268.2 g d21. While these second

experiments provided further evidence for unexpectedly

rapid consumption of gelatinous material at the deep-sea

floor, the scavenger response at the C. capillata bait differed

from that at both P. periphylla baits by an almost a complete

absence of hagfish (figures 1b–d and 3b–d and table 1; see

electronic supplementary material, movies S2–S4).
4. Discussion
Scavenging is a key process in marine ecosystems, controlling

the entry of energy from carrion falls into various food-web

components (e.g. microbial decomposers versus higher trophic

levels) as well as the persistence time and standing stock of

carrion at the seafloor. Although numerous observations of

jelly falls have been made in recent years, the dynamics

of scavenging on deep-sea jelly falls (such as the number of



thawed thawed

M. glutinosa M. tenuimana
decapod shrimp

fresh thawed

(a) (b)

(c) (d )

Figure 3. Myxine glutinosa scavengers swarming at the S. scombrus bait (a). M. glutinosa voraciously feeding on thawed P. periphylla bait (b). M. glutinosa and
M. tenuimana feeding on a single fresh P. periphylla carcass (c). M. tenuimana and decapod shrimp feeding on thawed C. capillata bait (d ). The black bait plate is
50 � 50 cm with gridlines separated by 5 cm.
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scavengers, carrion consumption rates) and the difference in

scavenging on jelly falls compared with other, more protein-

rich, carrion parcels (e.g. fish carcasses) have remained

unexplored. In our study, jelly falls rapidly attracted dense

aggregations of scavengers (maximum abundances of scaven-

gers exceeding more than 1000 animals), and scavengers

typical of the NE Atlantic bathyal zone consumed dead

jellyfish within a matter of hours, with very little time for

microbial decomposition. The jellyfish species used in this

study efficiently prey on microzooplankton and fish larvae

in the pelagic zone, and sink to the seafloor upon death

[9,10,20]. They therefore represent a direct link between pri-

mary producers and secondary consumers in the pelagic

zone and demersal and benthic fauna at the seafloor [14].

The rapid consumption rates measured in the jellyfish treat-

ments in this study suggest that jellyfish carcasses may not

regularly accumulate to form the large deposits that have

been seen in other regions such as the Ivory Coast [13] and

in the Gulf of Oman [12]. If these results are typical for other

deep-sea areas, our results show that the role of dead gelati-

nous zooplankton in transporting pelagic production to the

seafloor may be easily overlooked and their role in the biologi-

cal C-pump may be underestimated. Extensive microbial

degradation and low scavenging activity were reported at

large, deep-sea jelly-fall deposits ( jelly-detritus cover 100% of

the seafloor) in the Gulf of Oman [12] and at large deep-sea

pysosome deposits discovered off Ivory Coast [13] and the

continental slope off the eastern US coast [21,22]. The differ-

ence between our study and these other observations could

be related to differences in the sizes of the jelly-fall deposits

between studies, with high concentrations of dissolved inor-

ganic carbon (DIC), noxious sulfide and ammonium
produced at large jelly-fall deposits deterring scavengers

from feeding [14,26,27]. However, the small size of jelly falls

in this study does not appear to be the main reason for the

rapid scavenging activity observed as comparatively little or

a complete lack of scavenging has also been observed at

small gelatinous deposits in the deep Gulf of Oman (approx.

5 carcasses m22, [12]), off the Ivory Coast (approx.

5 carcasses m22 [13]), the abyssal NE Atlantic (less than

1 carcass m22, [15]) and a Norwegian fjord (0.01 carcasses m22,

[20]). Previous studies have shown that scavenging activity can

change as a function of season, with scavengers being more

active during and immediately following the seasonal particu-

late organic matter (POM) enrichment of the benthos [28]. This

study was undertaken around the time of the autumn POM

pulse [29], in contrast to the Gulf of Oman [12] and Ivory

Coast observations [13], which were made during the winter

[12] or early spring [13] (i.e. before the springtime POM

pulse). Thus, seasonal changes in scavenging activity may

also partially explain the much greater scavenging rates

observed in this study relative to other published observations.

Clearly, further investigations using different quantities of

dead jellyfish deployed at the seafloor at different times of

year are needed to understand the main factors driving scaven-

ging processes at jelly falls.

No significant differences in the diversity of scavengers, bait

removal times and wet-weight consumption rates were found

between jellyfish and fish carrion in this study, suggesting that

scavenging dynamics at jelly falls may be similar to other types

of carrion. In fact, based on the time for complete removal of

the baits, mean wet-weight consumption rates for thawed

P. periphylla (1934.6+464.0 g wet weight d21, table 2) were

within the same order of magnitude as rates reported from
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the Arabian Sea and Arctic Ocean for tuna (2690 g d21)

[30], and trout, turbot and mackerel (2600 g d21) carcasses [31],

respectively. Nevertheless, some differences in scavenging

dynamics were observed. Jellyfish falls attracted higher abun-

dances of invertebrates (including galatheids and decapod

shrimp) per unit carrion mass compared with energy-rich fish

carrion, which attracted higher abundances of vertebrate

scavengers. Moreover, the P. periphylla carcasses attracted three

scavenger successional stages relative to the S. scombrus exper-

iments, where only two were observed. The different scavenger

succession at the jellyfish carcasses may be related to the lower

energy content of the P. periphylla carrion (6.7 and 16.7 kJ g dry

weight21 for the fresh and thawed P. periphylla baits, respect-

ively) relative to S. scombrus (26.4 kJ g dry weight21) as

scavenger composition and succession do change as a function

of the biochemical content of carrion (e.g. at whale falls, [32]).

We found selective feeding by hagfish on the energy-rich gona-

dal tissue of fresh P. periphylla carcasses prior to the consumption

of other tissues (see the electronic supplementary material,

movie S3). These observations suggest that energy content may

be a major factor driving the temporal succession of scavengers

at jellyfish carcasses. While this study showed, for the first

time, that the scavenging process at jellyfish and fish carrion

is similar in many aspects, it also revealed that carrion of

different species of jellyfish can attract different scavenger assem-

blages. The exact reason for the lack of M. glutinosa at the

C. capillata baits relative to the P. periphylla experiments is unclear.

However, some decapod crustaceans are more resistant to highly

toxic nematocysts and jellyfish mucus compared with certain

fishes [33]. While the nematocysts of C. capillata were probably

destroyed during the freezing process, the difference in scaven-

ger diversity observed between the C. capillata and P. periphylla
carcass treatments could be related to differences in tissue toxicity

between species, as C. capillata produces highly toxic mucus [34]

that may be particularly noxious to fish [33].
5. Conclusion
Efficient predation pressure imposed by jellyfish in the pelagic

zone [7,9,10] and their fast sinking speeds (as carcasses, [11])

means that jellyfish blooms can effectively incorporate pelagic

C into gelatinous biomass and make it rapidly available to

seafloor communities when jellyfish blooms senesce. If jellyfish

carrion deposits are extensive, they may alter seafloor bio-

geochemistry over large areas (through smothering) [12–14]

as well as benthic boundary layer hydrodynamics, with

concomitant impacts on many other benthic processes (e.g.

recruitment, [14]). The removal of carcasses by scavenging is
thus one of the main processes regulating the effect of jelly

falls on the benthic environment. However, until now, no

direct quantitative scavenging studies have ever been carried

out in the deep sea to directly assess scavenging dynamics at

jelly falls, or identify differences in scavenging dynamics rela-

tive to more protein-rich fish carrion. Using two different and

widely distributed jellyfish species, we have shown that dense

scavenger assemblages (more than 1000 scavengers) composed

of species characteristic of the NE Atlantic bathyal zone

rapidly gather and consume jellyfish carcasses at the deep-

sea floor, with many aspects of the scavenging process

mirroring processes observed at fish carcasses of similar

mass. Moreover, our results show that jellyfish carrion may

not always accumulate at the seafloor to form large deposits,

and could therefore be easily overlooked as a source of nutri-

tion to deep-sea benthic and demersal fauna. If these

observations are typical for other deep-sea habitats, they

suggest that gelatinous zooplankton carcasses may be far

more important in sustaining deep-sea benthic and demersal

communities than has been previously thought [12–15,

20,35]. This potential oversight could have significant conse-

quences for estimating energy and carbon transfer from

gelatinous pelagic food webs to metazoan biomass in the

deep sea. Ultimately, our study has shown a tight link between

the surface and seafloor ecosystems, including a potentially

more direct pathway for surface production to enter benthic

food webs. In particular, the energy contained in gelatinous

bodies can rapidly attract large numbers of scavengers, and

be rapidly incorporated into deep-sea food webs, lessening

expected impacts of enhanced jellyfish production on deep-

water fisheries and pelagic–benthic coupling [8]. Thus,

changes to biological communities and biogeochemical cycling

in the deep ocean resulting from overlying jellyfish blooms,

and the resulting societal and economic consequences, could

be lower than those currently being forecasted [8,36,37].
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