There are many instances in genetics in which we wish to determine whether
two candidate populations are distinguishable on the basis of their genetic
structure. Examples include populations which are geographically separated,
case--control studies and quality control (when participants in a study have
been genotyped at different laboratories). This latter application is of
particular importance in the era of large scale genome wide association
studies, when collections of individuals genotyped at different locations are
being merged to provide increased power. The traditional method for detecting
structure within a population is some form of exploratory technique such as
principal components analysis. Such methods, which do not utilise our prior
knowledge of the membership of the candidate populations. are termed
\emph{unsupervised}. Supervised methods, on the other hand are able to utilise
this prior knowledge when it is available.
In this paper we demonstrate that in such cases modern supervised approaches
are a more appropriate tool for detecting genetic differences between
populations. We apply two such methods, (neural networks and support vector
machines) to the classification of three populations (two from Scotland and one
from Bulgaria). The sensitivity exhibited by both these methods is considerably
higher than that attained by principal components analysis and in fact
comfortably exceeds a recently conjectured theoretical limit on the sensitivity
of unsupervised methods. In particular, our methods can distinguish between the
two Scottish populations, where principal components analysis cannot. We
suggest, on the basis of our results that a supervised learning approach should
be the method of choice when classifying individuals into pre-defined
populations, particularly in quality control for large scale genome wide
association studies.Comment: Accepted PLOS On