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Exploration licences for seafloor mineral deposits have been

granted across large areas of the world’s oceans, with the

abyssal Pacific Ocean being the primary target for polymetallic

nodules—a potentially valuable source of minerals. These

nodule-bearing areas support a large diversity of deep-sea life

and although studies have begun to characterize the benthic

fauna within the region, the ecological interactions between

large bathypelagic vertebrates of the open ocean and the

abyssal seafloor remain largely unknown. Here we report

seafloor geomorphological alterations observed by an

autonomous underwater vehicle that suggest large vertebrates

could have interacted with the seafloor to a maximum

depth of 4258 m in the recent geological past. Patterns of

disturbance on the seafloor are broadly comparable to

those recorded in other regions of the world’s oceans

attributed to beaked whales. These observations have

important implications for baseline ecological assessments

and the environmental management of potential future

mining activities within this region of the Pacific.

provided by NERC Open Researc
1. Introduction
The abyssal seafloor represents approximately 85% of the global

seafloor [1], yet many of the ecosystems and species that it

sustains are largely unknown because of the difficulties

in studying such a vast and remote environment. Advances in
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deep-submergence technologies have allowed abyssal research to be conducted at spatially confined

environments such as hydrothermal vents [2], trenches [3] and submarine canyons [4]. However,

studies at the scale necessary to understand the ecology and importance of sediment-hosted abyssal

plains are still rare [5].

The Clarion–Clipperton Zone (CCZ) in the Northeast Pacific covers around 6 million km2 and ranges

3000–6000 m in depth [6]. This region has attracted significant interest over the past decade owing to the

presence of polymetallic nodules—a targeted mineral resource of cobalt, copper and rare earth elements

in the deep sea. The International Seabed Authority (ISA) is the organization established by the 1982 UN

Convention on the Law of the Sea (UNCLOS) to manage seabed mining beyond the areas of national

jurisdiction (ABNJ) and, as of January 2018, the ISA had granted 16 exploration contracts within the

CCZ (figure 1).

It is widely accepted that nodules provide a home for a wide variety of suspension feeders and

specialized invertebrate megafauna, which are dependent on the hard substratum provided by the

nodules in an otherwise sediment-dominated environment [7]. To quantify the ecological importance

of these areas, under their contractual arrangements with the ISA, exploration contractors are obliged

to undertake environmental baseline biological studies. Researchers have begun to understand the

structure of benthic faunal assemblages in the CCZ [7,8]; however, the ecological interactions between

bathypelagic vertebrates of the open ocean and the abyssal seafloor remain largely unknown.

Therefore, serendipitous observations during industry-led deep-submergence work can be of

significant interest [9].

This paper suggests that large vertebrates have used the abyssal seafloor in the CCZ in the recent

geological past. We demonstrate that sequential depressions represented by acoustic shadows from

autonomous underwater vehicle (AUV) geophysical surveys observed in the CCZ are spatially

comparable and, from limited seafloor imagery, represent a morphology akin to those inferred from

beaked whales in the Atlantic [10] and Mediterranean [11,12].
2. Material and methods
Managing Impacts of Deep-seA reSource exploitation (MIDAS) is an EU-funded project aimed at

building the knowledge base to underpin sound environmental policies in relation to deep-sea

mining. As part of this project, the RRS James Cook visited the CCZ in April to May 2015 (expedition

JC120; [13]), focusing on the UK Seabed Resources Ltd Claim Zone and the northeasternmost Area of

Particular Environmental Interest (APEI) defined by the ISA [14]. This expedition used the

Autosub6000 AUV [15] along with a suite of other data collection methods to form an environmental

baseline for this area.

Operations were constrained within an approximately 5500 km2 area of seafloor within the APEI and

within approximately 1100 km2 of the UK Seabed Resources Ltd Claim Zone. Shipboard EM120

multibeam echosounder data acquired and gridded at 100 m resolution were used to create

bathymetric derivatives for survey planning. In the bathymetric data, several morphological features

were clearly visible in the region. To try and capture this variation, a stratified random survey was

designed using objective criteria [13]. High-resolution acoustic mapping data (multibeam echosounder

and side-scan sonar data) from defined strata were recorded using Autosub6000 (figure 1).

Autosub6000 is equipped with an Edgetech FS2200-M dual-frequency side-scan sonar and sub-bottom

profiler [16]. The high-frequency setting (410 kHz) of the Edgetech side-scan sonar was used both for

short dedicated transects (15 m altitude) and during photo-transects (3 m altitude) carried out by the

AUV. The extremely low incidence angles at approximately 3 m altitude allowed the sonar to image

very shallow depressions (represented as acoustic shadows), which could also be seen faintly in

the 15 m altitude data (figure 2). However, the depressions were not visible in lower-frequency, or

higher-altitude data.

In total, four Autosub6000 missions (M79, M81, M83 within the APEI and M85 within the UK claim

zone) were achieved at the optimal altitude (3 m) and frequency (410 kHz) to allow seafloor depressions

to be resolved. Processing of the high-frequency side-scan sonar data was completed using the NOC-

developed PRISM software package [17]. Results were collated in ERDAS Imagine and compiled into

a single image mosaic. All resolvable depressions were digitized in ArcGIS 10.3 as a point file. From

this shapefile, a series of ‘tracks’ (curvilinear strings of sequential depressions) were selected for

further analysis. As the detection of depressions varies with the quality of the side-scan data, not all

depressions were easily resolved. Therefore, objective criteria were designed to assess the spatial

http://rsos.royalsocietypublishing.org/
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Cook Islands Investment Corporation (CIIC; Cook Islands)
Deep Ocean Resources Development Company (DORD; Japan)
China Ocean Mineral Resources Research and Development Association. (COMRA; China)
Bundesanstalt fur Geowissenschaften and Rohstoffe (BGR; Germany)
Institut Francais de Recherche pour l'Exploitation de la Mer (IFREMER; France)
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Government of the Republic of Korea
Marawa Research and Exploration Ltd (Kiribati)
Global Sea Mineral Resources NV (GSR; Belgium)
Nauru Ocean Resources Inc. (NORI; Nauru)

Figure 1. (a) Region targeted for polymetallic nodule mining in the Clarion – Clipperton Zone (CCZ), Pacific Ocean. Exploration
claims are delineated by coloured boxes. The Areas of Particular Environmental Interest (APEI) are shown in grey. (b) During
expedition JC120, parts of the northeasternmost APEI and the UK claim zone were surveyed. (Inset top) EM120 shipboard
multibeam from the APEI with Autosub6000 M79, M81 and M83 side-scan sonar missions. (Inset bottom) EM120 shipboard
multibeam from the UK claim zone with Autosub6000 M85 side-scan sonar mission.
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Figure 2. Detail of independently obtained high-frequency side-scan sonar at (a) 15 m (traces faint) and (b) 3 m (easily resolved)
altitude.
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patterns of the depressions within a given track. For M83 and M85, only 1 and 2 tracks were detected,

respectively. Both of these sets of tracks had a minimum number of 6 depressions (i.e. 5 mid-point to

mid-point distances). As a result, 6 was set as the minimum number of sequential, detectable

depressions for M79 and M80. Additionally, the tracks were not counted if they crossed the nadir of

the geophysical survey (the centre region of the side-scan sonar swath, which represents the seafloor

directly under the sonar, and tends to be poorly resolved as a result of the geometry of the acoustic

signal). If a track crosses the nadir, a depression may not have been detected in the region of the

seafloor in which the nadir occurs, which would result in an incorrect distance between depressions

being calculated. Depression length and width were measured directly from the raw side-scan data

using the Edgetech DISCOVER 4200 software, and the distance between consecutive depressions

within a given track was determined using the analysis toolbox in ArcGIS 10.3. For comparison, the

distance between depressions was also calculated from the high-resolution photomosaic published in [12].

Seabed imagery was successfully collected in a zig-zag survey design randomly located within the

acoustic survey areas of M79, M81 and M83 within the APEI. Photographic data were obtained using

two Point Gray Research Inc. Grasshopper 2 cameras on the AUV, one mounted vertically and the

other obliquely looking forward [5]. The field of view from the vertically mounted camera was

approximately 1.7 m2. AUV photography and high-frequency side-scan surveys were acquired

simultaneously at a 3 m altitude. As a result, the photographs provided by the vertically mounted

camera run through the nadir (approx. 1.5 m width) of the geophysical data, preventing simultaneous

assessment of features in both the photographs and side-scan data.

Seabed photographs from the successful AUV photography missions were reviewed. Owing to the

perpendicular angle of the camera to the seafloor of the vertically mounted camera, any depressions

or relief in the seafloor topography is difficult to resolve. Only limited occurrences of the depressions

were observed in the forward-facing camera, and no laser scaling is provided in the oblique view

images. Therefore, no further morphometric data could be obtained.
3. Results and discussion
AUV acoustic seabed surveys of an area within the Clarion–Clipperton Zone (CCZ; figure 1) revealed

elongated depressions across the seafloor fabric (figure 3). A total of 3539 depressions were counted

over side-scan sonar data covering 21.8 km2 at water depths from 3999 to 4258 m in the northeastern

CCZ (table 1). These depressions formed curvilinear tracks along the seafloor, consisting of up to 21

depressions spaced between 6 and 13 m apart. The seafloor depressions followed variable paths, with

distinct tracks spaced irregularly over much of the area surveyed and occasionally crossing (figure 3).

Depressions consisted of irregular furrows on the seafloor (mean 0.97 m wide and 2.57 m long)

approximately 0.13 m deep (data provided from figure 3). Limited observations of individual

depressions were also visible on seafloor imagery (figure 4), with these observations broadly

corresponding in morphology to those inferred from the side-scan data.

http://rsos.royalsocietypublishing.org/
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Figure 3. Autosub6000 Mission 81 (M81) within APEI. (a) High-frequency (410 kHz) side-scan sonar acquired at 3 m altitude. Areas
with high acoustic backscatter are represented in light grey, low acoustic backscatter in dark grey. Orange circles indicate depressions
that have been digitized in ArcGIS 10.3. (b) Zoom of M81 indicating sequential depressions or ‘tracks’. (c) Single sequence of
depressions (track) from M81. Depth: 4023 m. (d ) Overlapping tracks of differing ages. White tracks show high contrast and
sharp edges indicating relatively younger tracks than those in orange with lower contrast and less definitive edges. Depth: 4041 m.

Figure 4. Image provided from the oblique camera from Autosub6000 Mission 79 (M79) within the APEI shows two depressions,
inferred to be those also observed from acoustic data. White dashed line indicates an area where sediment from the excavation has
subsequently covered nodules within the vicinity. Eroded edges would suggest that these particular depressions have not been made
in recent years. Depth: 4153 m.
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The CCZ has an extremely low food supply ( particulate organic carbon flux approximately

1 gC m22 y21; [18]), bottom currents (1 – 9 cm s21) [19], sedimentation (0.35 cm kyr21) [20] and

bioturbation rates (3–6 cm2 yr21) [21], suggesting tracks may be preserved for long periods of time.

Based on the sedimentation rate alone, a maximum age for these tracks in the CCZ can be estimated,

with it taking approximately 28 kyr to fill a typical trace depression (0.1 m deep). The geophysical

data presented here appear to show tracks of various ages based on their acoustic shadows; shadows

with sharp edges are inferred to be from more recent depressions, while shadows with lower

reflective contrast are inferred to correspond to older depressions, having experienced infilling by

sedimentation, bioturbation and erosion by bottom currents (figure 3).

There is no direct evidence for the cause of the depressions. No known geological mechanism exists

for the formation of curvilinear sequences of shallow depressions in deep-water low-permeability

http://rsos.royalsocietypublishing.org/
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sediments with no advective seabed fluid flow expected [22]. The size and frequency of depressions

suggests that only a large organism could be responsible. The largest fish species (less than 1.02 m)

known to inhabit these water depths in the Pacific are Coryphaenoides armatus and Coryphaenoides
yaquinae [23]. These species of abyssal fish have reduced locomotory capacity [24] and slow swimming

speeds (less than 0.15 m s21) [25] and are unlikely to be able to create relatively deep, sequential

depressions in clay sediments [20] several times longer than their body lengths. Complex behaviours

associated with nesting [26] have not been observed in deep-sea fishes and would be energetically

extremely costly to make in this environment.

Geomorphic alterations of the seafloor caused by marine tetrapods have been recognized in both

modern [27] and palaeontological records [28]. In modern oceans, these seabed alterations (e.g.

gouges, pits, tracks, etc.) have been well documented from narwhals and beluga whales in fjords [29],

to walruses and humpback whales on the shallow continental shelf [30]. The characteristic patterns

observed within this study and the distance between the midpoints of consecutive depressions within

a given track are similar to seafloor modifications identified from remotely operated vehicle (ROV)

video in the Mediterranean (separation distance 5–10 m [9]; separation distance 6–10 m [12]) with

their occurrence being attributed to foraging beaked whales. From limited imagery, the depressions

are also of similar morphology to those presented in previous studies [9,10]. However, it is important

to note that some inconsistencies are observed, specifically when compared with those from Woodside

et al. [9], where a narrow central groove is observed superimposed on a larger seafloor depression.

These differences could be attributed to either (a) the methodologies obtaining the size and

morphology of depression—side-scan sonar can be used only to provide approximate measurements

based on acoustic shadows and may not resolve subtleties in the morphology (i.e. a groove feature

within a depression), while measurements from oblique ROV videography can again only provide an

estimate of size, but will give greater visual resolution; (b) the relative age of the depression, which

may result in altered morphology (owing to seafloor processes); and/or finally; (c) different species

being responsible for making the depressions.

Despite being the most speciose family of the cetaceans, deep-diving beaked whales of the family

Ziphiidae represent the most elusive whales in the world’s oceans, with species new to science still

being discovered [31]. Unlike shallow-water counterparts (e.g. Delphinidae), or large filter-feeding

relatives (e.g. Balaenidae), deep-diving whales are challenging to study owing to their open-ocean

pelagic nature, small fin with a low-surface profile and inconspicuous surface blows [32]. To date, five

extant species of beaked whale (Ziphiidae) and the deep-diving sperm whale (Physeter microcephalus)

are likely to occur in the waters of the Pacific Ocean within the CCZ region [33]. While it is not

possible to identify which species (extinct or extant) could be responsible, our observations of seafloor

modifications within the 4258 m contour exceed the deepest known dive [34] by any species of whale

by over 1200 m.

Throughout the CCZ, there is a high incidence of fossil whale bones from the Family Ziphiidae [35].

Furthermore, a recent ‘whale-fall’ of a small odontocete has been observed at the 4142 m depth [36].

Although the presence of extinct fossilized whale bones and the observation of a recently deceased

odontocete do not demonstrate that these animals were (or are) capable of diving to these abyssal

depths, it does confirm their presence over geological timescales within the CCZ region. When we

consider the maximum eustatic sea-level amplitude, we would suggest that even if these marks were

made during the last glacial maximum, when water depths in the Pacific Ocean were 125–135 m

lower [37], the species responsible would still have been capable of diving to depths of nearly 4000 m.

Anatomical studies suggest that cranial air spaces in Cuvier’s beaked whales could withstand a dive

to depths of 5000 m [38], and although the physiological limits of diving are unknown, it is

conceivable that a whale capable of diving to these depths exists in our oceans today.

Several hypotheses have been proposed as to why whales may cause such indentations on the

seafloor. These include (i) removing parasites or dead skin [11], behaviour that is known from other

odontocetes in shallow water [39–41]; (ii) foraging in the sediments for prey items (benthic or

infaunal invertebrates) [9]; or (iii) trying to catch motile bentho-pelagic species such as cephalopods

and fish [10]. As a result of (ii) and (iii), it has been suggested that individuals may be ingesting

debris accidently [42]. However, there are examples where other marine tetrapods are thought to (iv)

intentionally ingest coarse material to regulate buoyancy [43].

The characteristic curvilinear pattern observed here would suggest that an individual would come

into contact with the seafloor multiple times during one dive. Therefore, it appears that the individual

is actively excavating the sediment. Invertebrate benthic biomass in abyssal plains is reported to be

low (approx. 4 g m22) [44]—unlike the large shallow-water feeding mysticetes on the continental shelf

http://rsos.royalsocietypublishing.org/
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(which filter-feed on sediments containing approx. 170 g m22 of ampeliscid amphipods) [30], this

bentho-abyssal approach for a species of whale would represent an energetically costly mode of

foraging for such parsimonious feeding.

Some species of beaked whale are known to feed in close proximity to the seafloor (Mesoplodon
densirostris) [45], while other species (Ziphius cavirostris) in the east [46,47] and west North Pacific

(Berardius bairdii) [48] are reported to feed on abyssal bentho-pelagic fish, including the Macrouridae

(or grenadiers). Maximum abundance of abyssal fish (including grenadiers) has recently been

estimated at 723 individuals km22 [49], which represents a significant food resource at depths beyond

4000 m. Although an efficient predatory method of echolocation [50] and suction feeding is employed

by beaked whales [51] and other known species of odontocetes, this does not preclude a chase after

escaping prey. Energetic foraging has been shown in the echolocating, suction-feeding, short-finned

pilot whale [52], therefore it is plausible that sequential tracks could be a by-product of whale chasing

prey [10].

Ingesting material (including nodules) for ballast—a hypothesis first postulated following the

Challenger expedition [35]—is documented in both groups of fossil (with gastrolith function reviewed

by [53]) and extant families of marine tetrapods [43,54,55] with the primary role inferred to regulate

buoyancy in species that ‘fly’ or ‘glide’ underwater using hydrofoil fins (e.g. ottarids, penguins,

pleisosaurs). To date, gastroliths (or ‘stomach stones’) have not been considered to play a major role in

cetaceans that swim primarily using a caudal fin [43]. However, research suggests prolonged periods

of ‘gliding’ are a behavioural response by caudal-fin swimming marine mammals to improve

energetic efficiency during deep dives [56] and that buoyancy [57,58] and biomechanical strategies

[59] influence these different swimming gaits. Both physiological [60,61] and behavioural adaptions

[59] would suggest that deep-diving species have the capability to forage at depth without the need

to ingest large quantities of sediment or stone to add ballast. However, gastroliths have been

documented in both individuals of Baird’s beaked whale (B. bairdii) [48] and the sperm whale

(P. microcephalus) [62], which has recently been reported to follow the seafloor in deep ‘benthic’ dives

[63] and, from historic observations, even ‘plough’ the seafloor [64]. As to whether the occurrences of

gastroliths in these species can be attributed to accidental ingestion [42] or individuals actively

partaking in some form of geophagy remains unknown.

Although with the dataset available we cannot determine which species is responsible, or why they

are creating these disturbances on the seafloor, the precautionary principle must be adhered to. Sperm

whales and all the extant species of Ziphiidae are likely to occur within the CCZ and research would

suggest that some of these deep divers may be capable of using the sea floor within this region; this

may have important implications for management of existing and planned marine industrial activities.

All of these species are on the IUCN Red List of Threatened Species (http://www.iucnredlist.org/,

accessed 2018) and Article 120 of the 1982 UNCLOS puts in place measures for their conservation.

Monitoring of marine mammals in areas of industrial activity will be important, and current

guidance from the International Seabed Authority (ISBA/19/LTC/8) requires contractors to record

sightings of marine mammals to ascertain spatial and temporal variability of species within the

region. For deep-diving whales that are renowned for their elusive lifestyle and sometimes

inconspicuous identification at the surface, traditional vessel-based marine mammal observations may

not be effective [32] and active management to avoid impacts to whales from underwater noise, to

which they are particularly sensitive, will be necessary.

Whichever taxa may be responsible for these sea-floor interactions, this study highlights how the use

of ultra-low altitude deep-submergence AUVs will become invaluable in detecting these observations

over large scales (kilometres) and deriving seafloor habitat utilization maps, while human-directed

ROV observations will be key in visually examining and sampling these disturbances further.

Deep-diving whales can be found throughout our global oceans—to what extent they are using and

altering the seafloor environment remains unknown. The observations presented in this study

highlight the number of important discoveries still to be made in our deep ocean and, yet, we are

already looking to exploit a habitat that we know very little about.
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