670 research outputs found

    Three-dimensional structure of the Upper Scorpius association with the Gaia first data release

    Full text link
    Using new proper motion data from recently published catalogs, we revisit the membership of previously identified members of the Upper Scorpius association. We confirmed 750 of them as cluster members based on the convergent point method, compute their kinematic parallaxes and combined them with Gaia parallaxes to investigate the 3D structure and geometry of the association using a robust covariance method. We find a mean distance of 146±3±6146\pm 3\pm 6~pc and show that the morphology of the association defined by the brightest (and most massive) stars yields a prolate ellipsoid with dimensions of 74×38×3274\times38\times32~pc3^{3}, while the faintest cluster members define a more elongated structure with dimensions of 98×24×1898\times24\times18~pc3^{3}. We suggest that the different properties of both populations is an imprint of the star formation history in this region.Comment: 5 pages, 1 figure, MNRAS letters (in press

    Young and embedded clusters in Cygnus-X: evidence for building up the IMF?

    Full text link
    We provide a new view on the Cygnus-X north complex by accessing for the first time the low mass content of young stellar populations in the region. CFHT/WIRCam camera was used to perform a deep near-IR survey of this complex, sampling stellar masses down to ~0.1 M_\odot. Several analysis tools, including a extinction treatment developed in this work, were employed to identify and uniformly characterise a dozen unstudied young star clusters in the area. Investigation of their mass distributions in low-mass domain revealed a relatively uniform log-normal IMF with a characteristic mass of 0.32±\pm0.08 M_\odot and mass dispersion of 0.40±\pm0.06. In the high mass regime, their derived slopes showed that while the youngest clusters (age < 4 Myr) presented slightly shallower values with respect to the Salpeter's, our older clusters (4 Myr < age < 18 Myr) showed IMF compliant values and a slightly denser stellar population. Although possibly evidencing a deviation from an 'universal' IMF, these results also supports a scenario where these gas dominated young clusters gradually 'build up' their IMF by accreting low-mass stars formed in their vicinity during their first ~3 Myr, before the gas expulsion phase, emerging at the age of ~4 Myr with a fully fledged IMF. Finally, the derived distances to these clusters confirmed the existence of at least 3 different star forming regions throughout Cygnus-X north complex, at distances of 500-900 pc, 1.4-1.7 kpc and 3.0 kpc, and revealed evidence of a possible interaction between some of these stellar populations and the Cygnus-OB2 association.Comment: 20 pages, 19 figures. Contains an appendix with 10 extra figure

    Star Spot Induced Radial Velocity Variability in LkCa 19

    Full text link
    We describe a new radial velocity survey of T Tauri stars and present the first results. Our search is motivated by an interest in detecting massive young planets, as well as investigating the origin of the brown dwarf desert. As part of this survey, we discovered large-amplitude, periodic, radial velocity variations in the spectrum of the weak line T Tauri star LkCa 19. Using line bisector analysis and a new simulation of the effect of star spots on the photometric and radial velocity variability of T Tauri stars, we show that our measured radial velocities for LkCa19 are fully consistent with variations caused by the presence of large star spots on this rapidly rotating young star. These results illustrate the level of activity-induced radial velocity noise associated with at least some very young stars. This activity-induced noise will set lower limits on the mass of a companion detectable around LkCa 19, and similarly active young stars.Comment: ApJ accepted, 27 pages, 12 figures, aaste

    High Resolution Spectroscopy during Eclipse of the Young Substellar Eclipsing Binary 2MASS 0535-0546. I. Primary Spectrum: Cool Spots versus Opacity Uncertainties

    Full text link
    We present high-resolution Keck optical spectra of the very young substellar eclipsing binary 2MASS J05352184-0546085, obtained during eclipse of the lower-mass (secondary) brown dwarf. The observations yield the spectrum of the higher-mass (primary) brown dwarf alone, with negligible (~1.6%) contamination by the secondary. We perform a simultaneous fine-analysis of the TiO-epsilon band and the red lobe of the KI doublet, using state-of-the-art PHOENIX Dusty and Cond synthetic spectra. Comparing the effective temperature and surface gravity derived from these fits to the {\it empirically} determined surface gravity of the primary (logg=3.5) then allows us to test the model spectra as well as probe the prevailing photospheric conditions. We find that: (1) fits to TiO-epsilon alone imply Teff=2500 \pm 50K; (2) at this Teff, fits to KI imply logg=3.0, 0.5 dex lower than the true value; and (3) at the true logg, KI fits yield Teff=2650 \pm 50K, ~150K higher than from TiO-epsilon alone. On the one hand, these are the trends expected in the presence of cool spots covering a large fraction of the primary's surface (as theorized previously to explain the observed Teff reversal between the primary and secondary). Specifically, our results can be reproduced by an unspotted stellar photosphere with Teff=2700K and (empirical) logg=3.5, coupled with axisymmetric cool spots that are 15% cooler (2300K), have an effective logg=3.0 (0.5 dex lower than photospheric), and cover 70% of the surface. On the other hand, the trends in our analysis can also be reproduced by model opacity errors: there are lacks in the synthetic TiO-epsilon opacities, at least for higher-gravity field dwarfs. Stringently discriminating between the two possibilities requires combining the present results with an equivalent analysis of the secondary (predicted to be relatively unspotted compared to the primary).Comment: To appear in ApJ. 11 pages, 5 figure

    A Critique of Current Magnetic-Accretion Models for Classical T-Tauri Stars

    Get PDF
    Current magnetic-accretion models for classical T-Tauri stars rely on a strong, dipolar magnetic field of stellar origin to funnel the disk material onto the star, and assume a steady-state. In this paper, I critically examine the physical basis of these models in light of the observational evidence and our knowledge of magnetic fields in low-mass stars, and find it lacking. I also argue that magnetic accretion onto these stars is inherently a time-dependent problem, and that a steady-state is not warranted. Finally, directions for future work towards fully-consistent models are pointed out.Comment: 2 figure

    The model of dynamo with small number of modes and magnetic activity of T Tauri stars

    Full text link
    The model that describes operation of dynamo in fully convective stars is presented. It is based on representation of stellar magnetic field as a superposition of finite number of poloidal and toroidal free damping modes. In the frame of adopted low of stellar differential rotation we estimated minimal value of dynamo number D, starting from which generation of cyclic magnetic field in stars without radiative core is possible. We also derived expression for period of the cycle. It was found that dynamo cycles of fully convective stars and stars with thin convective envelopes differ in a qualitative way: 1) distribution of spots over latitude during the cycle is different in these stars; 2) the model predicts that spot formation in fully convective stars should be strongly suppressed at some phases of the cycle. We have analyzed historical lightcurve of WTTS star V410 Tau and found that long term activity of the star is not periodic process. Rather one can speak about quasi cyclic activity with characteristic time of 4\sim 4 yr and chaotic component over imposed. We concluded also that redistribution of cool spots over longitude is the reason of long term variations of V410 Tau brightness. It means that one can not compare directly results of photometric observations with predictions of our axially symmetric (for simplicity) model which allows to investigate time evolution of spot's distribution over latitude. We then discuss what kind of observations and in which way could be used to check predictions of the dynamo theory.Comment: 18 pages, 5 figures, accepted to Astron. Let

    The distance to the Orion Nebula Cluster

    Get PDF
    The distance to the Orion Nebula Cluster (ONC) is estimated using the rotational properties of its low-mass pre main-sequence (PMS) stars. Rotation periods, projected equatorial velocities and distance-dependent radius estimates are used to form an observational sin i distribution (where i is the axial inclination), which is modelled to obtain the distance estimate. A distance of 440+/-34 pc is found from a sample of 74 PMS stars with spectral types between G6 and M2, but this falls to 392+/-32 pc when PMS stars with accretion discs are excluded on the basis of their near-infrared excess. Since the radii of accreting stars are more uncertain and probably systematically underestimated, then this closer distance is preferred. The quoted uncertainties include statistical errors and uncertainties due to a number of systematic effects including binarity and inclination bias. This method is geometric and independent of stellar evolution models, though does rely on the assumption of random axial orientations and the Cohen & Kuhi (1979) effective temperature scale for PMS stars. The new distance is consistent with, although lower and more precise, than most previous ONC distance estimates. A closer ONC distance implies smaller luminosities and an increased age based on the positions of PMS stars in the Hertzsprung-Russell diagram.Comment: Accepted for publication in MNRAS (12 pages) Table 1 available from the autho

    Starspot-induced optical and infrared radial velocity variability in T Tauri star Hubble 4

    Get PDF
    We report optical (6150 Ang) and K-band (2.3 micron) radial velocities obtained over two years for the pre-main sequence weak-lined T Tauri star Hubble I 4. We detect periodic and near-sinusoidal radial velocity variations at both wavelengths, with a semi-amplitude of 1395\pm94 m/s in the optical and 365\pm80 m/s in the infrared. The lower velocity amplitude at the longer wavelength, combined with bisector analysis and spot modeling, indicates that there are large, cool spots on the stellar surface that are causing the radial velocity modulation. The radial velocities maintain phase coherence over hundreds of days suggesting that the starspots are long-lived. This is one of the first active stars where the spot-induced velocity modulation has been resolved in the infrared.Comment: Accepted for publication in The Astrophysical Journa

    Colloidal Gels: Equilibrium and Non-Equilibrium Routes

    Get PDF
    We attempt a classification of different colloidal gels based on colloid-colloid interactions. We discriminate primarily between non-equilibrium and equilibrium routes to gelation, the former case being slaved to thermodynamic phase separation while the latter is individuated in the framework of competing interactions and of patchy colloids. Emphasis is put on recent numerical simulations of colloidal gelation and their connection to experiments. Finally we underline typical signatures of different gel types, to be looked in more details in experiments.Comment: topical review, accepted in J. Phys. Condens. Matte
    corecore