11 research outputs found

    Contribution of increasing plasma membrane to the energetic cost of early zebrafish embryogenesis

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rodenfels, J., Sartori, P., Golfier, S., Nagendra, K., Neugebauer, K. M., & Howard, J. Contribution of increasing plasma membrane to the energetic cost of early zebrafish embryogenesis. Molecular Biology of the Cell, 31(7), (2020): 520-526, doi:10.1091/mbc.E19-09-0529.How do early embryos allocate the resources stored in the sperm and egg? Recently, we established isothermal calorimetry to measure heat dissipation by living zebra­fish embryos and to estimate the energetics of specific developmental events. During the reductive cleavage divisions, the rate of heat dissipation increases from ∼60 nJ · s−1 at the two-cell stage to ∼90 nJ · s−1 at the 1024-cell stage. Here we ask which cellular process(es) drive this increasing energetic cost. We present evidence that the cost is due to the increase in the total surface area of all the cells of the embryo. First, embryo volume stays constant during the cleavage stage, indicating that the increase is not due to growth. Second, the heat increase is blocked by nocodazole, which inhibits DNA replication, mitosis, and cell division; this suggests some aspect of cell proliferation contributes to these costs. Third, the heat increases in proportion to the total cell surface area rather than total cell number. Fourth, the heat increase falls within the range of the estimated costs of maintaining and assembling plasma membranes and associated proteins. Thus, the increase in total plasma membrane associated with cell proliferation is likely to contribute appreciably to the total energy budget of the embryo.The analysis of these data was initiated in the 2019 Physical Biology of the Cell course at the Marine Biological Laboratory in Woods Hole, MA. We acknowledge the support and feedback from the course directors and participants. This work was supported by funding from EMBO Long-Term Fellowship ALTF 754–2015 (to J.R.), the Eric and Wendy Schmidt Membership in Biology at the Institute for Advanced Study (to P.S.), National Institutes of Health (NIH) R21 HD094013 (to K.M.N.), and NIH R01 GM110386 (to J.H.). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

    The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria

    Get PDF
    Prohibitin ring complexes in the mitochondrial inner membrane regulate cell proliferation as well as the dynamics and function of mitochondria. Although prohibitins are essential in higher eukaryotes, prohibitin-deficient yeast cells are viable and exhibit a reduced replicative life span. Here, we define the genetic interactome of prohibitins in yeast using synthetic genetic arrays, and identify 35 genetic interactors of prohibitins (GEP genes) required for cell survival in the absence of prohibitins. Proteins encoded by these genes include members of a conserved protein family, Ups1 and Gep1, which affect the processing of the dynamin-like GTPase Mgm1 and thereby modulate cristae morphogenesis. We show that Ups1 and Gep1 regulate the levels of cardiolipin and phosphatidylethanolamine in mitochondria in a lipid-specific but coordinated manner. Lipid profiling by mass spectrometry of GEP-deficient mitochondria reveals a critical role of cardiolipin and phosphatidylethanolamine for survival of prohibitin-deficient cells. We propose that prohibitins control inner membrane organization and integrity by acting as protein and lipid scaffolds

    The Role of Systemically Circulating Hedgehog in Drosophila melanogaster

    No full text
    The physiological response to environmental cues involves complex interorgan communication via endocrine factors and hormones, but the underlying mechanisms are poorly understood. In particular, little is known about how animals coordinate systemic growth and developmental timing in response to environmental changes. The morphogen Hedgehog (Hh), which is well studied in tissue patterning and homeostasis, has only recently been implicated in the regulation of lipid and sugar metabolism. Interestingly, Hh is present in systemic circulation in both, ies and mammals. Here, we demonstrate that systemic Hh is produced in the midgut and secreted in association with the lipoprotein particle lipophorin (Lpp) into the hemolymph to mediate the interorgan communication between the midgut and two tissues, the fat body and the prothoracic gland (PG). We show that midgut hh expression is regulated by dietary sugar and amino acid levels, and RNAi-mediated knock-down of circulating Hh leads to starvation sensitivity. We demonstrate that circulating Hh is required to inhibit systemic growth and developmental progression. In insects, developmental transitions are regulated by steroid hormones, which are produced by the PG. Nutritional regulation of growth is, in part, mediated by the Drosophila fat body. Strikingly, canonical Hh pathway components are present in both tissues, the fat body and the PG. To understand the Hh-mediated function during nutritional stress, we ectopically activated or inhibited the Hh signaling pathway specifically in the fat body and the PG. Our results show that systemic Hh exerts its function through these two target tissues. Hh signaling in the fat body is required for survival during periods of nutrient deprivation, and ectopic activation of fat body Hh signaling causes an inhibition of systemic growth. Hh signaling in the PG slows down developmental progression by inhibiting steroid hormone biosynthesis. In conclusion, we propose that the midgut senses the uptake of dietary sugar and amino acids and secrets Hh in association with Lpp particles into circulation to relay information about the feeding status to the developing animal. Therefore, circulating Hh functions as a hormone and signals in an endocrine manner to the fat body and the prothoracic gland to coordinate systemic growth and developmental timing in response to changes in nutrient availability

    The Role of Systemically Circulating Hedgehog in Drosophila melanogaster

    Get PDF
    The physiological response to environmental cues involves complex interorgan communication via endocrine factors and hormones, but the underlying mechanisms are poorly understood. In particular, little is known about how animals coordinate systemic growth and developmental timing in response to environmental changes. The morphogen Hedgehog (Hh), which is well studied in tissue patterning and homeostasis, has only recently been implicated in the regulation of lipid and sugar metabolism. Interestingly, Hh is present in systemic circulation in both, ies and mammals. Here, we demonstrate that systemic Hh is produced in the midgut and secreted in association with the lipoprotein particle lipophorin (Lpp) into the hemolymph to mediate the interorgan communication between the midgut and two tissues, the fat body and the prothoracic gland (PG). We show that midgut hh expression is regulated by dietary sugar and amino acid levels, and RNAi-mediated knock-down of circulating Hh leads to starvation sensitivity. We demonstrate that circulating Hh is required to inhibit systemic growth and developmental progression. In insects, developmental transitions are regulated by steroid hormones, which are produced by the PG. Nutritional regulation of growth is, in part, mediated by the Drosophila fat body. Strikingly, canonical Hh pathway components are present in both tissues, the fat body and the PG. To understand the Hh-mediated function during nutritional stress, we ectopically activated or inhibited the Hh signaling pathway specifically in the fat body and the PG. Our results show that systemic Hh exerts its function through these two target tissues. Hh signaling in the fat body is required for survival during periods of nutrient deprivation, and ectopic activation of fat body Hh signaling causes an inhibition of systemic growth. Hh signaling in the PG slows down developmental progression by inhibiting steroid hormone biosynthesis. In conclusion, we propose that the midgut senses the uptake of dietary sugar and amino acids and secrets Hh in association with Lpp particles into circulation to relay information about the feeding status to the developing animal. Therefore, circulating Hh functions as a hormone and signals in an endocrine manner to the fat body and the prothoracic gland to coordinate systemic growth and developmental timing in response to changes in nutrient availability

    Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos

    No full text
    <p>Nuclear bodies are cellular compartments that lack lipid bilayers and harbor specific RNAs and proteins. Recent proposals that nuclear bodies form through liquid-liquid phase separation leave the question of how different nuclear bodies maintain their distinct identities unanswered. Here we investigate Cajal bodies (CBs), histone locus bodies (HLBs) and nucleoli – involved in assembly of the splicing machinery, histone mRNA 3′ end processing, and rRNA processing, respectively – in the embryos of the zebrafish, <i>Danio rerio</i>. We take advantage of the transcriptional silence of the 1-cell embryo and follow nuclear body appearance as zygotic transcription becomes activated. CBs are present from fertilization onwards, while HLB and nucleolar components formed foci several hours later when histone genes and rDNA became active. HLB formation was blocked by transcription inhibition, suggesting nascent histone transcripts recruit HLB components like U7 snRNP. Surprisingly, we found that U7 base-pairing with nascent histone transcripts was not required for localization to HLBs. Rather, the type of Sm ring assembled on U7 determined its targeting to HLBs or CBs; the spliceosomal Sm ring targeted snRNAs to CBs while the specialized U7 Sm-ring localized to HLBs, demonstrating the contribution of protein constituents to the distinction among nuclear bodies. Thus, nucleolar, HLB, and CB components can mix in early embryogenesis when transcription is naturally or artificially silenced. These data support a model in which transcription of specific gene loci nucleates nuclear body components with high specificity and fidelity to perform distinct regulatory functions.</p

    Mobilization of cholesterol induces the transition from quiescence to growth in Caenorhabditis elegans through steroid hormone and mTOR signaling

    No full text
    Abstract Recovery from the quiescent developmental stage called dauer is an essential process in C. elegans and provides an excellent model to understand how metabolic transitions contribute to developmental plasticity. Here we show that cholesterol bound to the small secreted proteins SCL-12 or SCL-13 is sequestered in the gut lumen during the dauer state. Upon recovery from dauer, bound cholesterol undergoes endocytosis into lysosomes of intestinal cells, where SCL-12 and SCL-13 are degraded and cholesterol is released. Free cholesterol activates mTORC1 and is used for the production of dafachronic acids. This leads to promotion of protein synthesis and growth, and a metabolic switch at the transcriptional level. Thus, mobilization of sequestered cholesterol stores is the key event for transition from quiescence to growth, and cholesterol is the major signaling molecule in this process
    corecore