14 research outputs found

    Is Foundational Movement Skill Competency Important for Keeping Children Physically Active and at a Healthy Weight?

    Get PDF
    This longitudinal study examines the associations between foundational movement skills (FMS) competency, moderate-to-vigorous physical activity (MVPA) and weight status among children (n = 75) attending preschools in deprived areas from early to late childhood. Twelve FMS were assessed using the Children’s Activity and Movement in Preschool Motor Skills Protocol and video analysis. Physical activity was measured via hip-mounted accelerometry. Data was collected over a five-year period, with Baseline Follow Up data collected between 2010 and 2015. There was an overall pattern of increase for total, object-control and locomotor scores between Baseline and Follow-Up. Conversely, there was an overall pattern of decline for MVPA among participants. There was a positive significant (p < 0.05) association between total and locomotor scores and MVPA at Baseline. However, these associations weakened over time and no significant associations were found at Follow-Up. Baseline competency failed to predict Follow-Up MVPA or weight status. Likewise, Baseline MVPA was not found to be a predictor of Follow-Up FMS competency. Further longitudinal research is required to explore these associations among children from highly deprived areas. Future interventions may require a more holistic approach to improving FMS competency and increasing PA in order to account for the number of variables that can affect these outcomes

    Fundamental movement skills in relation to weekday and weekend physical activity in preschool children.

    Get PDF
    OBJECTIVES: To examine associations between fundamental movement skills and weekday and weekend physical activity among preschool children living in deprived communities. DESIGN: Cross-sectional observation study. METHODS: Six locomotor skills and 6 object-control skills were video-assessed using The Children's Activity and Movement in Preschool Study Motor Skills Protocol. Physical activity was measured via hip-mounted accelerometry. A total of 99 children (53% boys) aged 3-5 years (M 4.6, SD 0.5) completed all assessments. Multilevel mixed regression models were used to examine associations between fundamental movement skills and physical activity. Models were adjusted for clustering, age, sex, standardised body mass index and accelerometer wear time. RESULTS: Boys were more active than girls and had higher object-control skill competency. Total skill score was positively associated with weekend moderate-to-vigorous physical activity (p=0.034) but not weekday physical activity categories (p>0.05). When subdomains of skills were examined, object-control skills was positively associated with light physical activity on weekdays (p=0.008) and with light (p=0.033), moderate-to-vigorous (p=0.028) and light- and moderate-to-vigorous (p=0.008) physical activity at weekends. Locomotor skill competency was positively associated with moderate-to-vigorous physical activity on weekdays (p=0.016) and light physical activity during the weekend (p=0.035). CONCLUSIONS: The findings suggest that developing competence in both locomotor and object-control skills may be an important element in promoting an active lifestyle in young children during weekdays and at weekends

    Palatal implants are a good alternative to headgear: A randomized trial

    Get PDF
    Introduction: The objective of this study was to compare the effectiveness of midpalatal implants with that of headgear as methods of supplementing anchorage during orthodontic treatment. This was a randomized, clinical trial at the Chesterfield and North Derbyshire Royal Hospital NHS Trust and the Charles Clifford Dental Hospital, Sheffield, United Kingdom. Methods: Fifty-one orthodontic patients between the ages of 12 and 39 with absolute anchorage requirements were randomly allocated to receive either a midpalatal implant or headgear to reinforce orthodontic anchorage. The outcome measures of the trial were the surgical and orthodontic success rates of the implants, the number of visits, and the length of treatment time, and the success of treatment as judged by the peer assessment rating (PAR) score reductions and the patients’ attitudes to implant placement. Results: The surgical success rate of the implants was 75%, and the orthodontic success rate was more than 90%. Both implants and headgear proved to be effective methods of reinforcing anchorage. The total number of visits was greater in the implant group, but the overall treatment times were almost identical. There were no statistically significant differences between the 2 groups in PAR scores either at the start or the end of treatment, and the percentages of PAR score reductions were almost identical. The patients had no problems accepting midpalatal implants as a method of reinforcing anchorage. Conclusions: Midpalatal implants are an acceptable technique for reinforcing anchorage in orthodontic patients and a good alternative for patients who do not wish to wear headgear

    Measuring Spinal Mobility Using an Inertial Measurement Unit System: A Validation Study in Axial Spondyloarthritis

    Get PDF
    Portable inertial measurement units (IMUs) are beginning to be used in human motion analysis. These devices can be useful for the evaluation of spinal mobility in individuals with axial spondyloarthritis (axSpA). The objectives of this study were to assess (a) concurrent criterion validity in individuals with axSpA by comparing spinal mobility measured by an IMU sensor-based system vs. optical motion capture as the reference standard; (b) discriminant validity comparing mobility with healthy volunteers; (c) construct validity by comparing mobility results with relevant outcome measures. A total of 70 participants with axSpA and 20 healthy controls were included. Individuals with axSpA completed function and activity questionnaires, and their mobility was measured using conventional metrology for axSpA, an optical motion capture system, and an IMU sensor-based system. The UCOASMI, a metrology index based on measures obtained by motion capture, and the IUCOASMI, the same index using IMU measures, were also calculated. Descriptive and inferential analyses were conducted to show the relationships between outcome measures. There was excellent agreement (ICC > 0.90) between both systems and a significant correlation between the IUCOASMI and conventional metrology (r = 0.91), activity (r = 0.40), function (r = 0.62), quality of life (r = 0.55) and structural change (r = 0.76). This study demonstrates the validity of an IMU system to evaluate spinal mobility in axSpA. These systems are more feasible than optical motion capture systems, and they could be useful in clinical practice

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    ABSTRACT Developing a Fundamental Understanding of Biomass Structural Features Responsible

    No full text
    Lignocellulosic biomass is one of the most valuable alternative energy sources because it is renewable, widely available, and environmentally friendly. Unfortunately, enzymatic hydrolysis of biomass has been shown to be a limiting factor in the conversion of biomass to chemicals and fuels. This limitation is due to inherent structural features (i.e., acetyl content, lignin content, crystallinity, surface area, particle size, and pore volume) of biomass. These structural features are barriers that prevent complete hydrolysis; therefore, pretreatment techniques are necessary to render biomass highly digestible. The ability to predict the biomass reactivity based solely on its structural features would be of monumental importance. Unfortunately, no study to date can predict with certainty the digestibility of pretreated biomass. A concerted effort with Auburn University and Michigan State University has been undertaken to study hydrolysis mechanisms on a fundamental level. Predicting enzymatic hydrolysis based solely on structural features (lignin content, acetyl content, and crystallinity index) would be a major breakthrough in understanding enzymatic digestibility

    Characterization of AQPs in mouse, rat and human colon and their selective regulation by bile acids

    Get PDF
    In normal individuals, the epithelium of the colon absorbs 1.5-2 L of water a day to generate dehydrated feces. However, in the condition of bile acid malabsorption (BAM), an excess of bile acids in the colon results in diarrhea. Several studies have attempted to address the mechanisms contributing to BAM induced by various bile acids. However, none have addressed a potential dysregulation of aquaporin water channels, which are responsible for the majority of transcellular water transport in epithelial cells, as a contributing factor to the onset of diarrhea and the pathogenesis of BAM. In this study we aimed to systematically analyze the expression of AQPs in colonic epithelia from rat, mouse and human and determine whether their expression is altered in a rat model of BAM. Mass spectrometry-based proteomics, RT-PCR, and western blotting identified various AQPs in isolated colonic epithelial cells from rats (AQP1, 3, 4, 7, 8) and mice (AQP1, 4, 8). Several AQPs were also detected in human colon (AQP1, 3, 4, 7-9). Immunohistochemistry localized AQP1 to the apical plasma membrane of epithelial cells in the bottom of the crypts, whereas AQP3 (rat, human) and AQP4 (mice, human) were localized predominantly in the basolateral plasma membrane. AQP8 was localized intracellularly and at the apical plasma membrane of epithelial cells. Rats fed sodium cholate for 72 h had significantly increased fecal water content, suggesting development of BAM associated diarrhea. Colonic epithelial cells isolated from this model had significantly altered levels of AQP3, 7, and 8, suggesting that these AQPs may be involved in the pathogenesis of bile acid induced diarrhea

    Dual targeting of the thioredoxin and glutathione systems in cancer and HIV

    No full text
    Although the use of antioxidants for the treatment of cancer and HIV/AIDS has been proposed for decades, new insights gained from redox research have suggested a very different scenario. These new data show that the major cellular antioxidant systems, the thioredoxin (Trx) and glutathione (GSH) systems, actually promote cancer growth and HIV infection, while suppressing an effective immune response. Mechanistically, these systems control both the redox- and NO-based pathways (nitroso-redox homeostasis), which subserve innate and cellular immune defenses. Dual inhibition of the Trx and GSH systems synergistically kills neoplastic cells in vitro and in mice and decreases resistance to anticancer therapy. Similarly, the population of HIV reservoir cells that constitutes the major barrier to a cure for AIDS is exquisitely redox sensitive and could be selectively targeted by Trx and GSH inhibitors. Trx and GSH inhibition may lead to a reprogramming of the immune response, tilting the balance between the immune system and cancer or HIV in favor of the former, allowing elimination of diseased cells. Thus, therapies based on silencing of the Trx and GSH pathways represent a promising approach for the cure of both cancer and AIDS and warrant further investigation
    corecore