166 research outputs found
Determinants of maternal and umbilical blood lead levels: a cross-sectional study, Mosul, Iraq
<p>Abstract</p> <p>Background</p> <p>The populations who are most sensitive to lead exposure from various sources are pregnant women and their newborns. Aiming to explore the presence of correlation between maternal and cord blood lead levels and to identify potential predictors that may influence both levels, the present study has been conducted.</p> <p>Methods</p> <p>A cross-sectional study was conducted covering 350 full terms maternal-newborns pairs from Mosul maternity hospitals. Data were obtained directly from women just before delivery by the use of a detailed questionnaire form.</p> <p>Maternal and umbilical blood lead levels were estimated using LEADCARE<sup>® </sup>Blood Lead Testing System and Kits.</p> <p>Results</p> <p>A positive significant correlation was found between maternal and cord blood lead values (r = 0.856, p = 0.001). By backward stepwise logistic regression analysis the followings emerged as significant potential predictors of high maternal blood lead: low parity, smoking and Hb level <11 gm/dl. Regarding cord blood lead: coffee consumption and high maternal blood lead were significant risk predictors. Milk and milk products consumption, calcium intake and low level of physical activity were significantly operational in the prevention of high maternal blood lead levels. Iron intake and also low level of physical activity were shown as significant protective variables against high cord blood lead values.</p> <p>Conclusion</p> <p>Study results have provided baseline data needed to be transformed to decision makers to implement measures to eliminate lead from the environment and protect future generation from its deleterious effects.</p
New Pseudo-Phase Structure for -Pu
In this paper we propose a new pseudo-phase crystal structure, based on an
orthorhombic distortion of the diamond structure, for the ground-state
-phase of plutonium. Electronic-structure calculations in the
generalized-gradient approximation give approximately the same total energy for
the two structures. Interestingly, our new pseudo-phase structure is the same
as the Pu -phase structure except with very different b/a and c/a
ratios. We show how the contraction relative to the phase, principally
in the direction, leads to an -like structure in the [0,1,1] plane.
This is an important link between two complex structures of plutonium and opens
new possibilities for exploring the very rich phase diagram of Pu through
theoretical calculations
Critical boron-doping levels for generation of dislocations in synthetic diamond
Defects induced by boron doping in diamond layers were studied by transmission electron microscopy. The existence of a critical boron doping level above which defects are generated is reported. This level is found to be dependent on the CH4
/H2 molar ratios and on growth directions. The critical boron concentration lied in the 6.5–17.0 X 10 20 at/cm3 range in the direction and at 3.2 X 1021 at/cm
3 for the one. Strain related effects induced by the doping are shown not to
be responsible. From the location of dislocations and their Burger vectors, a model is proposed, together with their generation mechanism.6 page
Fault activity in the epicentral area of the 1580 Dover Strait (Pas-de-Calais) earthquake (northwestern Europe)
On 1580 April 6 one of the most destructive earthquakes of northwestern Europe took place in the Dover Strait (Pas de Calais). The epicentre of this seismic event, the magnitude of which is estimated to have been about 6.0, has been located in the offshore continuation of the North Artois shear zone, a major Variscan tectonic structure that traverses the Dover Strait. The location of this and two other moderate magnitude historical earthquakes in the Dover Strait suggests that the North Artois shear zone or some of its fault segments may be presently active. In order to investigate the possible fault activity in the epicentral area of the AD 1580 earthquake, we have gathered a large set of bathymetric and seismic-reflection data covering the almost-entire width of the Dover Strait. These data have revealed a broad structural zone comprising several subparallel WNW–ESE trending faults and folds, some of them significantly offsetting the Cretaceous bedrock. The geophysical investigation has also shown some indication of possible Quaternary fault activity. However, this activity only appears to have affected the lowermost layers of the sediment infilling Middle Pleistocene palaeobasins. This indicates that, if these faults have been active since Middle Pleistocene, their slip rates must have been very low. Hence, the AD 1580 earthquake appears to be a very infrequent event in the Dover Strait, representing a good example of the moderate magnitude earthquakes that sometimes occur in plate interiors on faults with unknown historical seismicity
Effects of acute administration of trimethylamine N-oxide on endothelial function: a translational study
Elevated circulating levels of nutrient-derived trimethylamine N-oxide (TMAO) have been associated with the onset and progression of cardiovascular disease by promoting athero-thrombosis. However, in conditions like bariatric surgery (Roux-en-Y gastric bypass, RYGB), stable increases of plasma TMAO are associated with improved endothelial function and reduced cardiovascular morbidity and mortality, thus questioning whether a mechanistic relationship between TMAO and endothelial dysfunction exists. Herein, we translationally assessed the effects of acute TMAO exposure on endothelial dysfunction, thrombosis and stroke. After RYGB, fasting circulating levels of TMAO increased in patients and obese rats, in parallel with an improved gluco-lipid profile and higher circulating bile acids. The latter enhanced FXR-dependent signalling in rat livers, which may lead to higher TMAO synthesis post RYGB. In lean rats, acute TMAO injection (7 mg kg) 1.5-h before sacrifice and ex-vivo 30-min incubation of thoracic aortas with 10 M TMAO did not impair vasodilation in response to acetylcholine (Ach), glucagon-like peptide 1, or insulin. Similarly, in lean WT mice (n = 5–6), TMAO injection prior to subjecting mice to ischemic stroke or arterial thrombosis did not increase its severity compared to vehicle treated mice. Endothelial nitric oxide synthase (eNOS) activity and intracellular stress-activated pathways remained unaltered in aorta of TMAO-injected rats, as assessed by Western Blot. Pre-incubation of human aortic endothelial cells with TMAO (10 M) did not alter NO release in response to Ach. Our results indicate that increased plasmatic TMAO in the near-physiological range seems to be a neutral bystander to vascular function as translationally seen in patients after bariatric surgery or in healthy lean rodent models and in endothelial cells exposed acutely to TMAO
Efficient photogeneration of charge carriers in silicon nanowires with a radial doping gradient
From electrodeless time-resolved microwave conductivity measurements, the
efficiency of charge carrier generation, their mobility, and decay kinetics on
photo-excitation were studied in arrays of Si nanowires grown by the
vapor-liquid-solid mechanism. A large enhancement in the magnitude of the
photoconductance and charge carrier lifetime are found depending on the
incorporation of impurities during the growth. They are explained by the
internal electric field that builds up, due to a higher doped sidewalls, as
revealed by detailed analysis of the nanowire morphology and chemical
composition
Relative energetics and structural properties of zirconia using a self-consistent tight-binding model
We describe an empirical, self-consistent, orthogonal tight-binding model for
zirconia, which allows for the polarizability of the anions at dipole and
quadrupole levels and for crystal field splitting of the cation d orbitals.
This is achieved by mixing the orbitals of different symmetry on a site with
coupling coefficients driven by the Coulomb potentials up to octapole level.
The additional forces on atoms due to the self-consistency and polarizabilities
are exactly obtained by straightforward electrostatics, by analogy with the
Hellmann-Feynman theorem as applied in first-principles calculations. The model
correctly orders the zero temperature energies of all zirconia polymorphs. The
Zr-O matrix elements of the Hamiltonian, which measure covalency, make a
greater contribution than the polarizability to the energy differences between
phases. Results for elastic constants of the cubic and tetragonal phases and
phonon frequencies of the cubic phase are also presented and compared with some
experimental data and first-principles calculations. We suggest that the model
will be useful for studying finite temperature effects by means of molecular
dynamics.Comment: to be published in Physical Review B (1 march 2000
Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery
International audienceThe phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of Li(x)CoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits
The effects of kisspeptin on β-cell function, serum metabolites and appetite in humans
Aims: To investigate the effect of kisspeptin on glucose-stimulated insulin secretion and appetite in humans. Materials and methods: In 15 healthy men (age: 25.2 ± 1.1 years; BMI: 22.3 ± 0.5 kg m−2), we compared the effects of 1 nmol kg−1 h−1 kisspeptin versus vehicle administration on glucose-stimulated insulin secretion, metabolites, gut hormones, appetite and food intake. In addition, we assessed the effect of kisspeptin on glucose-stimulated insulin secretion in vitro in human pancreatic islets and a human β-cell line (EndoC-βH1 cells). Results: Kisspeptin administration to healthy men enhanced insulin secretion following an intravenous glucose load, and modulated serum metabolites. In keeping with this, kisspeptin increased glucose-stimulated insulin secretion from human islets and a human pancreatic cell line in vitro. In addition, kisspeptin administration did not alter gut hormones, appetite or food intake in healthy men. Conclusions: Collectively, these data demonstrate for the first time a beneficial role for kisspeptin in insulin secretion in humans in vivo. This has important implications for our understanding of the links between reproduction and metabolism in humans, as well as for the ongoing translational development of kisspeptin-based therapies for reproductive and potentially metabolic conditions
- …