11 research outputs found

    Stimulation of Wild-Type, F508del- and G551D-CFTR Chloride Channels by Non-Toxic Modified pyrrolo[2,3-b]pyrazine Derivatives

    Get PDF
    Cystic fibrosis (CF) is a major inherited disorder involving abnormalities of fluid and electrolyte transport in a number of different organs due to abnormal function of cystic fibrosis transmembrane conductance regulator (CFTR) protein. We recently identified a family of CFTR activators, which contains the hit: RP107 [7-n-butyl-6-(4-hydroxyphenyl)[5H]-pyrrolo[2,3-b]pyrazine]. Here, we further evaluated the effect of the chemical modifications of the RP107-OH radical on CFTR activation. The replacement of the OH radical by a fluorine atom at position 2 (RP193) or 4 (RP185) significantly decreased the toxicity of the compounds without altering the ability to activate CFTR, especially for RP193. The non-toxic compound RP193 has no effect on cAMP production but stimulates the channel activity of wild-type CFTR in stably transfected CHO cells, in human bronchial epithelial NuLi-1 cells, and in primary culture of human bronchial epithelial cells (HBEC). Whole-cell and single patch-clamp recordings showed that RP193 induced a linear, time- and voltage-independent current, which was fully inhibited by two different and selective CFTR inhibitors (CFTRinh-172 and GPinh5a). Moreover, RP193 stimulates CFTR in temperature-rescued CuFi-1 (F508del/F508del) HBEC and in CHO cells stably expressing G551D-CFTR. This study shows that it is feasible to reduce cytotoxicity of chemical compounds without affecting their potency to activate CFTR and to rescue the class 2 F508del-CFTR and class 3 G551D-CFTR CF mutant activities

    Function, pharmacological correction and maturation of new Indian CFTR gene mutations

    Get PDF
    International audienceBackground: Cystic fibrosis (CF) is rare in India. Most CF mutations identified are not yet functionally characterized. Hence, genetic counselingand adoption of therapeutic approach are particularly difficult. Our aim was to study the function and maturation of a spectrum of eleven IndianCFTR mutations from classical CF and infertile male patients with CBAVD.Methods: We used Western blot, pharmacology and iodide efflux to study CFTR maturation and chloride transport in BHK cells expressingpEGFP-CFTR constructs for L69H, F87I, S118P, G126S, H139Q, F157C, F494L, E543A, S549N, Y852F and D1270E.Results: Among these CFTR mutants, only L69H is not processed as a c-band and not functional at 37 °C. However, the functions of L69H andS549N and the maturation of L69H are corrected at 27 °C and by the investigational drug VX809.Conclusion: These data should help in developing counseling and therapeutic approaches in India. We identified L69H as a novel class II CFmutation

    CFTR: Effect of ICL2 and ICL4 amino acids in close spatial proximity on the current properties of the channel

    No full text
    International audienceCFTR is the only ABC transporter functioning as a chloride (Cl−) channel.We studied molecular determinants, which might distinguish CFTR from standard ABC transporters, and focused on the interface formed by the intracellular loops from the membrane spanning domains. Methods: Residues from ICL2 and ICL4 in close proximity were targeted, and their involvement in the functioning of CFTR was studied by whole cell patch clamp recording. Results: We identified 2 pairs of amino acids, at the extremity of the bundle formed by the four intracellular loops, whose mutation i) decreases the Cl− current of CFTR (couple E267-K1060) or ii) increases it with a change of the electrophysiological signature (couple S263-V1056). Conclusions: These results highlight the critical role of these ICL residues in the assembly of the different domains and/or in the Cl− permeation pathway of CFTR

    Functional and Pharmacological Characterization of the Rare CFTR Mutation W361R

    No full text
    International audienceUnderstanding the functional consequence of rare cystic fibrosis (CF) mutations is mandatory for the adoption of precision therapeutic approaches for CF. Here we studied the effect of the very rare CF mutation, W361R, on CFTR processing and function. We applied western blot, patch clamp and pharmacological modulators of CFTR to study the maturation and ion transport properties of pEGFP-WT and mutant CFTR constructs, W361R, F508del and L69H-CFTR, expressed in HEK293 cells. Structural analyses were also performed to study the molecular environment of the W361 residue. Western blot showed that W361R-CFTR was not efficiently processed to a mature band C, similar to F508del CFTR, but unlike F508del CFTR, it did exhibit significant transport activity at the cell surface in response to cAMP agonists. Importantly, W361R-CFTR also responded well to CFTR modulators: its maturation defect was efficiently corrected by VX-809 treatment and its channel activity further potentiated by VX-770. Based on these results, we postulate that W361R is a novel class-2 CF mutation that causes abnormal protein maturation which can be corrected by VX-809, and additionally potentiated by VX-770, two FDA-approved small molecules. At the structural level, W361 is located within a class-2 CF mutation hotspot that includes other mutations that induce variable disease severity. Analysis of the 3D structure of CFTR within a lipid environment indicated that W361, together with other mutations located in this hotspot, is at the edge of a groove which stably accommodates lipid acyl chains. We suggest this lipid environment impacts CFTR folding, maturation and response to CFTR modulators

    Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia.

    Get PDF
    International audienceThe cystic fibrosis transmembrane conductance regulator (CFTR) is present in mature sperm and is required for sperm motility and capacitation. Both these processes are controlled by ions fluxes and are essential for fertilization. We have shown that SLC26A8, a sperm-specific member of the SLC26 family of anion exchangers, associates with the CFTR channel and strongly stimulates its activity. This suggests that the two proteins cooperate to regulate the anion fluxes required for correct sperm motility and capacitation. Here, we report on three heterozygous SLC26A8 missense mutations identified in a cohort of 146 men presenting with asthenozoospermia: c.260G>A (p.Arg87Gln), c.2434G>A (p.Glu812Lys), and c.2860C>T (p.Arg954Cys). These mutations were not present in 121 controls matched for ethnicity, and statistical analysis on a control population of 8,600 individuals (from dbSNP and 1000 Genomes) showed them to be associated with asthenozoospermia with a power > 95%. By cotransfecting Chinese hamster ovary (CHO)-K1 cells with SLC26A8 variants and CFTR, we showed that the physical interaction between the two proteins was partly conserved but that the capacity to activate CFTR-dependent anion transport was completely abolished for all mutants. Biochemical studies revealed the presence of much smaller amounts of protein for all variants, but these amounts were restored to wild-type levels upon treatment with the proteasome inhibitor MG132. Immunocytochemistry also showed the amounts of SLC26A8 in sperm to be abnormally small in individuals carrying the mutations. These mutations might therefore impair formation of the SLC26A8-CFTR complex, principally by affecting SLC26A8 stability, consistent with an impairment of CFTR-dependent sperm-activation events in affected individuals

    The genome of Ectocarpus subulatus – a highly stress-tolerant brown alga

    Get PDF
    International audienceBrown algae are multicellular photosynthetic stramenopiles that colonize marine rocky shores worldwide. Ectocarpus sp. Ec32 has been established as a genomic model for brown algae. Here we present the genome and metabolic network of the closely related species, Ectocarpus subulatus Kützing, which is characterized by high abiotic stress tolerance. Since their separation, both strains show new traces of viral sequences and the activity of large retrotransposons, which may also be related to the expansion of a family of chlorophyll-binding proteins. Further features suspected to contribute to stress tolerance include an expanded family of heat shock proteins, the reduction of genes involved in the production of halogenated defence compounds, and the presence of fewer cell wall polysaccharide-modifying enzymes. Overall, E. subulatus has mainly lost members of gene families down-regulated in low salinities, and conserved those that were up-regulated in the same condition. However, 96% of genes that differed between the two examined Ectocarpus species, as well as all genes under positive selection, were found to encode proteins of unknown function. This underlines the uniqueness of brown algal stress tolerance mechanisms as well as the significance of establishing E. subulatus as a comparative model for future functional studies

    Effect of chemoprevention by low-dose aspirin of new or recurrent colorectal adenomas in patients with Lynch syndrome (AAS-Lynch): study protocol for a multicenter, double-blind, placebo-controlled randomized controlled trial

    No full text
    Abstract Lynch syndrome (LS) is the most common cause of inherited colorectal cancer (CRC) and confers a high lifetime risk of CRC estimated to be up to 60%. Colonoscopy is recommended every 2 years in LS patients above the 20–25-year-old age bracket, and every year when colonic neoplasia has been detected. Efficient chemoprevention has the potential to represent a cost-effective intervention in these high-risk patients and could allow a delay in colonoscopy surveillance. Several epidemiological studies have shown that regular use of low dose aspirin is associated with a 20 to 30% reduction in the risk of sporadic colonic adenomas and colorectal cancer regardless of family risk. However, in recent large randomized trials in specific populations, aspirin use showed no protection for colorectal cancer. A prospective randomized CAPP-2 trial evaluated the effect of aspirin use in LS patients. The primary analysis of this trial showed no significant decrease in CRC in LS patients under daily aspirin. However, a preplanned secondary analysis after an extended follow-up showed a significant reduced risk of CRC in the aspirin group in the per-protocol analysis. The real effect and clinical benefit of aspirin are still to be consolidated in this population. The AAS-Lynch trial—a prospective, multicentric, double-blind, placebo-controlled, randomized clinical trial—was designed to investigate if daily aspirin therapy, at a dose of 100 or 300 mg, would decrease the occurrence or recurrence of colorectal adenomas in patients under 75 years of age, compared with placebo. Trial registration ClinicalTrials.gov NCT02813824 . Registered on 27 June 2016. The trial was prospectively registered
    corecore