18 research outputs found

    A COVID-19 E OS RISCOS OCUPACIONAIS PARA PROFISSIONAIS DE ENFERMAGEM

    Get PDF
    A COVID-19 é uma doença infecciosa causada pelo novo coronavírus (SARS-COV2). É caracterizada como um importante problema de saúde pública mundial que tem causado pressão psicológica nos profissionais da área de saúde, devido às incertezas provocadas pelo vírus e os riscos de contaminação. O objetivo desse artigo é conhecer as peculiaridades apontadas pela literatura sobre os riscos ocupacionais da COVID-19 para os profissionais de enfermagem até o momento. Trata-se de um estudo de revisão integrativa de literatura. Os profissionais de enfermagem estão expostos a riscos ocupacionais como: pressão psicológica, sobrecarga de trabalho, alto poder de transmissão do vírus, medo de adoecer, ansiedade e dificuldade na manipulação dos equipamentos de proteção individual. Para minimizar esses riscos, recomenda-se a disponibilização de equipamentos de proteção individual para os profissionais da saúde e a realização de treinamentos sobre o uso adequado de tais equipamentos, bem como ajustes na estrutura dos fluxos operacionais dos serviços

    IMPACTO DO DESMAME NO COMPORTAMENTO E BEM-ESTAR DE LEITÕES: REVISÃO DE LITERATURA

    Get PDF
    A produção suína se caracteriza pela alta produtividade decorrente de melhorias principalmente em condições de ambiente, genética e nutrição animal, estando em constante evolução para atender as exigências do mercado consumidor. Neste contexto, um conflito de interesse acontece ao associar altos índices produtivos em curto espaço de tempo com o bem-estar dos animais. No entanto algumas mudanças impactam diretamente nos índices produtivos, como a fase de desmame que é considerada a mais traumática, com reflexo direto no desempenho e bem-estar dos animais. O desmame tem impacto direto no desenvolvimento dos leitões e vários fatores corroboram para que esta fase seja considerada a mais traumática na vida dos animais. O desmame precoce pode aumentar o estresse, elevar o índice de diarreia, reduzir o crescimento e aumentar a taxa de mortalidade na suinocultura. É preciso ser mais criterioso no desmame em virtude da delicadeza inerente ao processo e a todas as questões comportamentais, fisiológicas, endócrinas e produtivas envolvidas

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Epidemiological Surveillance Reveals the Rise and Establishment of the Omicron SARS-CoV-2 Variant in Brazil

    No full text
    The introduction of SARS-CoV-2 variants of concern (VOCs) in Brazil has been associated with major impacts on the epidemiological and public health scenario. In this study, 291,571 samples were investigated for SARS-CoV-2 variants from August 2021 to March 2022 (the highest peak of positive cases) in four geographical regions of Brazil. To identify the frequency, introduction, and dispersion of SARS-CoV-2 variants in 12 Brazilian capitals, VOCs defining spike mutations were identified in 35,735 samples through genotyping and viral genome sequencing. Omicron VOC was detected in late November 2021 and replaced the Delta VOC in approximately 3.5 weeks. We estimated viral load differences between SARS-CoV-2 Delta and Omicron through the evaluation of the RT-qPCR cycle threshold (Ct) score in 77,262 samples. The analysis demonstrated that the Omicron VOC has a lower viral load in infected patients than the Delta VOC. Analyses of clinical outcomes in 17,586 patients across the country indicated that individuals infected with Omicron were less likely to need ventilatory support. The results of our study reinforce the importance of surveillance programs at the national level and showed the introduction and faster dispersion of Omicron over Delta VOC in Brazil without increasing the numbers of severe cases of COVID-19

    Dynamics of Early Establishment of SARS-CoV-2 VOC Omicron Lineages in Minas Gerais, Brazil

    No full text
    Brazil is one of the nations most affected by Coronavirus disease 2019 (COVID-19). The introduction and establishment of new virus variants can be related to an increase in cases and fatalities. The emergence of Omicron, the most modified SARS-CoV-2 variant, caused alarm for the public health of Brazil. In this study, we examined the effects of the Omicron introduction in Minas Gerais (MG), the second-most populous state of Brazil. A total of 430 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples from November 2021 to June 2022 from Belo Horizonte (BH) city were sequenced. These newly sequenced genomes comprise 72% of all previously available SARS-CoV-2 genomes for the city. Evolutionary analysis of novel viral genomes reveals that a great diversity of Omicron sublineages have circulated in BH, a pattern in-keeping with observations across Brazil more generally. Bayesian phylogeographic reconstructions indicate that this diversity is a product of a large number of international and national importations. As observed previously, São Paulo state is shown as a significant hub for viral spread throughout the country, contributing to around 70% of all viral Omicron introductions detected in MG

    Monitoring the Establishment of VOC Gamma in Minas Gerais, Brazil: A Retrospective Epidemiological and Genomic Surveillance Study

    No full text
    Since its first identification in Brazil, the variant of concern (VOC) Gamma has been associated with increased infection and transmission rates, hospitalizations, and deaths. Minas Gerais (MG), the second-largest populated Brazilian state with more than 20 million inhabitants, observed a peak of cases and deaths in March–April 2021. We conducted a surveillance study in 1240 COVID-19-positive samples from 305 municipalities distributed across MG’s 28 Regional Health Units (RHU) between 1 March to 27 April 2021. The most common variant was the VOC Gamma (71.2%), followed by the variant of interest (VOI) zeta (12.4%) and VOC alpha (9.6%). Although the predominance of Gamma was found in most of the RHUs, clusters of Zeta and Alpha variants were observed. One Alpha-clustered RHU has a history of high human mobility from countries with Alpha predominance. Other less frequent lineages, such as P.4, P.5, and P.7, were also identified. With our genomic characterization approach, we estimated the introduction of Gamma on 7 January 2021, at RHU Belo Horizonte. Differences in mortality between the Zeta, Gamma and Alpha variants were not observed. We reinforce the importance of vaccination programs to prevent severe cases and deaths during transmission peaks

    The Omicron Lineages BA.1 and BA.2 (<i>Betacoronavirus</i> SARS-CoV-2) Have Repeatedly Entered Brazil through a Single Dispersal Hub

    No full text
    Brazil currently ranks second in absolute deaths by COVID-19, even though most of its population has completed the vaccination protocol. With the introduction of Omicron in late 2021, the number of COVID-19 cases soared once again in the country. We investigated in this work how lineages BA.1 and BA.2 entered and spread in the country by sequencing 2173 new SARS-CoV-2 genomes collected between October 2021 and April 2022 and analyzing them in addition to more than 18,000 publicly available sequences with phylodynamic methods. We registered that Omicron was present in Brazil as early as 16 November 2021 and by January 2022 was already more than 99% of samples. More importantly, we detected that Omicron has been mostly imported through the state of São Paulo, which in turn dispersed the lineages to other states and regions of Brazil. This knowledge can be used to implement more efficient non-pharmaceutical interventions against the introduction of new SARS-CoV variants focused on surveillance of airports and ground transportation
    corecore