384 research outputs found

    On the non-abelian Brumer-Stark conjecture and the equivariant Iwasawa main conjecture

    Get PDF
    We show that for an odd prime p, the p-primary parts of refinements of the (imprimitive) non-abelian Brumer and Brumer-Stark conjectures are implied by the equivariant Iwasawa main conjecture (EIMC) for totally real fields. Crucially, this result does not depend on the vanishing of the relevant Iwasawa mu-invariant. In combination with the authors' previous work on the EIMC, this leads to unconditional proofs of the non-abelian Brumer and Brumer-Stark conjectures in many new cases.Comment: 33 pages; to appear in Mathematische Zeitschrift; v3 many minor updates including new title; v2 some cohomological arguments simplified; v1 is a revised version of the second half of arXiv:1408.4934v

    The Effects of Temperature on Clot Microstructure and Strength in Healthy Volunteers

    Get PDF
    BACKGROUND: Anesthesia, critical illness, and trauma are known to alter thermoregulation, which can potentially affect coagulation and clinical outcome. This in vitro preclinical study explores the relationship between temperature change and hemostasis using a recently validated viscoelastic technique. We hypothesize that temperature change will cause significant alterations in the microstructural properties of clot. METHODS: We used a novel viscoelastic technique to identify the gel point of the blood. The gel point identifies the transition of the blood from a viscoelastic liquid to a viscoelastic solid state. Furthermore, identification of the gel point provides 3 related biomarkers: the elastic modulus at the gel point, which is a measure of clot elasticity; the time to the gel point (TGP), which is a measure of the time required to form the clot; and the fractal dimension of the clot at the gel point, df, which quantifies the microstructure of the clot. The gel point measurements were performed in vitro on whole blood samples from 136 healthy volunteers over a temperature range of 27°C to 43°C. RESULTS: There was a significant negative correlation between increases in temperature, from 27°C to 43°C, and TGP (r = −0.641, P 37°C. CONCLUSIONS: This study demonstrates that the gel point technique can identify alterations in clot microstructure because of changes in temperature. This was demonstrated in slower-forming clots with less structural complexity as temperature is decreased. We also found that significant changes in clot microstructure occurred when the temperature was ≤32°C

    Labour supply and skills demands in fashion retailing

    Get PDF
    If, as Adam Smith once famously suggested, Britain was a nation of shopkeepers then it is now a nation of shopworkers. Retail is now a significant part of the UK economy, accounting for £256 billion in sales and one-third of all consumer spending (Skillsmart, 2007). It is the largest private sector employer in the UK, employing 3m workers, or 1 in 10 of the working population. For future job creation in the UK economy retail is also similarly prominent and the sector is expected to create a further 250,000 jobs to 2014 (Skillsmart, 2007). The centrality of retail to economic success and job creation is apparent in other advanced economies. For example, within the US, retail sales is the occupation with the largest projected job growth in the period 2004-2014 (Gatta et al., 2009) and in Australia retail accounts for 1 in 6 workers (Buchanan et al., 2003). Within the UK these workers are employed in approximately 290,000 businesses, encompassing large and small organizations and also a number of sub-sectors. This variance suggests that retail should not be regarded as homogenous in its labour demands. Hart et al. (2007) note how skill requirements and the types of workers employed may differ across the sector. This chapter further opens up this point, providing an analysis of the labour supply and skills demands for the sub-sectors of clothing, footwear and leather goods, which are described by Skillsmart (2007: 48) as being 'significant categories in UK retailing'

    Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis

    Get PDF
    The prevalence of non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) is increasing at an alarming rate. The role of bile acids in the development and progression of NAFLD to NASH and cirrhosis is poorly understood. This study aimed to quantify the bile acid metabolome in healthy subjects and patients with non-cirrhotic NASH under fasting conditions and after a standardized meal

    Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia

    Get PDF
    The first appearance of skeletal metazoans in the late Ediacaran (~550 million years ago; Ma) has been linked to the widespread development of oxygenated oceanic conditions, but a precise spatial and temporal reconstruction of their evolution has not been resolved. Here we consider the evolution of ocean chemistry from ~550 to ~541. Ma across shelf-to-basin transects in the Zaris and Witputs Sub-Basins of the Nama Group, Namibia. New carbon isotope data capture the final stages of the Shuram/Wonoka deep negative C-isotope excursion, and these are complemented with a reconstruction of water column redox dynamics utilising Fe-S-C systematics and the distribution of skeletal and soft-bodied metazoans. Combined, these inter-basinal datasets provide insight into the potential role of ocean redox chemistry during this pivotal interval of major biological innovation.The strongly negative δ13C values in the lower parts of the sections reflect both a secular, global change in the C-isotopic composition of Ediacaran seawater, as well as the influence of 'local' basinal effects as shown by the most negative δ13C values occurring in the transition from distal to proximal ramp settings. Critical, though, is that the transition to positive δ13C values postdates the appearance of calcified metazoans, indicating that the onset of biomineralization did not occur under post-excursion conditions.Significantly, we find that anoxic and ferruginous deeper water column conditions were prevalent during and after the transition to positive δ13C that marks the end of the Shuram/Wonoka excursion. Thus, if the C isotope trend reflects the transition to global-scale oxygenation in the aftermath of the oxidation of a large-scale, isotopically light organic carbon pool, it was not sufficient to fully oxygenate the deep ocean.Both sub-basins reveal highly dynamic redox structures, where shallow, inner ramp settings experienced transient oxygenation. Anoxic conditions were caused either by episodic upwelling of deeper anoxic waters or higher rates of productivity. These settings supported short-lived and monospecific skeletal metazoan communities. By contrast, microbial (thrombolite) reefs, found in deeper inner- and mid-ramp settings, supported more biodiverse communities with complex ecologies and large skeletal metazoans. These long-lived reef communities, as well as Ediacaran soft-bodied biotas, are found particularly within transgressive systems, where oxygenation was persistent. We suggest that a mid-ramp position enabled physical ventilation mechanisms for shallow water column oxygenation to operate during flooding and transgressive sea-level rise. Our data support a prominent role for oxygen, and for stable oxygenated conditions in particular, in controlling both the distribution and ecology of Ediacaran skeletal metazoan communities

    Observed hand cleanliness and other measures of handwashing behavior in rural Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We analyzed data from the baseline assessment of a large intervention project to describe typical handwashing practices in rural Bangladesh, and compare measures of hand cleanliness with household characteristics.</p> <p>Methods</p> <p>We randomly selected 100 villages from 36 districts in rural Bangladesh. Field workers identified 17 eligible households per village using systematic sampling. Field workers conducted 5-hour structured observations in 1000 households, and a cross-sectional assessment in 1692 households that included spot checks, an evaluation of hand cleanliness and a request that residents demonstrate their usual handwashing practices after defecation.</p> <p>Results</p> <p>Although 47% of caregivers reported and 51% demonstrated washing both hands with soap after defecation, in structured observation, only 33% of caregivers and 14% of all persons observed washed both hands with soap after defecation. Less than 1% used soap and water for handwashing before eating and/or feeding a child. More commonly people washed their hands only with water, 23% after defecation and 5% before eating. Spot checks during the cross sectional survey classified 930 caregivers (55%) and 453 children (28%) as having clean appearing hands. In multivariate analysis economic status and water available at handwashing locations were significantly associated with hand cleanliness among both caregivers and children.</p> <p>Conclusions</p> <p>A minority of rural Bangladeshi residents washed both hands with soap at key handwashing times, though rinsing hands with only water was more common. To realize the health benefits of handwashing, efforts to improve handwashing in these communities should target adding soap to current hand rinsing practices.</p

    An fMRI Investigation of Preparatory Set in the Human Cerebral Cortex and Superior Colliculus for Pro- and Anti-Saccades

    Get PDF
    Previous studies have identified several cortical regions that show larger BOLD responses during preparation and execution of anti-saccades than pro-saccades. We confirmed this finding with a greater BOLD response for anti-saccades than pro-saccades during the preparation phase in the FEF, IPS and DLPFC and in the FEF and IPS in the execution phase. We then applied multi-voxel pattern analysis (MVPA) to establish whether different neural populations are involved in the two types of saccade. Pro-saccades and anti-saccades were reliably decoded during saccade execution in all three cortical regions (FEF, DLPFC and IPS) and in IPS during saccade preparation. This indicates neural specialization, for programming the desired response depending on the task rule, in these regions. In a further study tailored for imaging the superior colliculus in the midbrain a similar magnitude BOLD response was observed for pro-saccades and anti-saccades and the two saccade types could not be decoded with MVPA. This was the case both for activity related to the preparation phase and also for that elicited during the execution phase. We conclude that separate cortical neural populations are involved in the task-specific programming of a saccade while in contrast, the SC has a role in response preparation but may be less involved in high-level, task-specific aspects of the control of saccades

    CNS Recruitment of CD8+ T Lymphocytes Specific for a Peripheral Virus Infection Triggers Neuropathogenesis during Polymicrobial Challenge

    Get PDF
    Although viruses have been implicated in central nervous system (CNS) diseases of unknown etiology, including multiple sclerosis and amyotrophic lateral sclerosis, the reproducible identification of viral triggers in such diseases has been largely unsuccessful. Here, we explore the hypothesis that viruses need not replicate in the tissue in which they cause disease; specifically, that a peripheral infection might trigger CNS pathology. To test this idea, we utilized a transgenic mouse model in which we found that immune cells responding to a peripheral infection are recruited to the CNS, where they trigger neurological damage. In this model, mice are infected with both CNS-restricted measles virus (MV) and peripherally restricted lymphocytic choriomeningitis virus (LCMV). While infection with either virus alone resulted in no illness, infection with both viruses caused disease in all mice, with ∼50% dying following seizures. Co-infection resulted in a 12-fold increase in the number of CD8+ T cells in the brain as compared to MV infection alone. Tetramer analysis revealed that a substantial proportion (>35%) of these infiltrating CD8+ lymphocytes were LCMV-specific, despite no detectable LCMV in CNS tissues. Mechanistically, CNS disease was due to edema, induced in a CD8-dependent but perforin-independent manner, and brain herniation, similar to that observed in mice challenged intracerebrally with LCMV. These results indicate that T cell trafficking can be influenced by other ongoing immune challenges, and that CD8+ T cell recruitment to the brain can trigger CNS disease in the apparent absence of cognate antigen. By extrapolation, human CNS diseases of unknown etiology need not be associated with infection with any particular agent; rather, a condition that compromises and activates the blood-brain barrier and adjacent brain parenchyma can render the CNS susceptible to pathogen-independent immune attack

    Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91phox subunit of NADPH oxidase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both (-) and (+)-naloxone attenuate inflammation-mediated neurodegeneration by inhibition of microglial activation through superoxide reduction in an opioid receptor-independent manner. Multiple lines of evidence have documented a pivotal role of overactivated NADPH oxidase (NOX2) in inflammation-mediated neurodegeneration. We hypothesized that NOX2 might be a novel action site of naloxone to mediate its anti-inflammatory actions.</p> <p>Methods</p> <p>Inhibition of NOX-2-derived superoxide by (-) and (+)-naloxone was measured in lipopolysaccharide (LPS)-treated midbrain neuron-glia cultures and phorbol myristate acetate (PMA)-stimulated neutrophil membranes by measuring the superoxide dismutase (SOD)-inhibitable reduction of tetrazolium salt (WST-1) or ferricytochrome c. Further, various ligand (<sup>3</sup>H-naloxone) binding assays were performed in wild type and gp91<it><sup>phox-/- </sup></it>neutrophils and transfected COS-7 and HEK293 cells. The translocation of cytosolic subunit p47<it><sup>phox </sup></it>to plasma membrane was assessed by western blot.</p> <p>Results</p> <p>Both (-) and (+)-naloxone equally inhibited LPS- and PMA-induced superoxide production with an IC50 of 1.96 and 2.52 μM, respectively. Competitive binding of <sup>3</sup>H-naloxone with cold (-) and (+)-naloxone in microglia showed equal potency with an IC50 of 2.73 and 1.57 μM, respectively. <sup>3</sup>H-Naloxone binding was elevated in COS-7 and HEK293 cells transfected with gp91<sup><it>phox</it></sup>; in contrast, reduced <sup>3</sup>H-naloxone binding was found in neutrophils deficient in gp91<sup><it>phox </it></sup>or in the presence of a NOX2 inhibitor. The specificity and an increase in binding capacity of <sup>3</sup>H-naloxone were further demonstrated by 1) an immunoprecipitation study using gp91<sup><it>phox </it></sup>antibody, and 2) activation of NOX2 by PMA. Finally, western blot studies showed that naloxone suppressed translocation of the cytosolic subunit p47<sup><it>phox </it></sup>to the membrane, leading to NOX2 inactivation.</p> <p>Conclusions</p> <p>Strong evidence is provided indicating that NOX2 is a non-opioid novel binding site for naloxone, which is critical in mediating its inhibitory effect on microglia overactivation and superoxide production.</p
    corecore