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Abstract
We show that for an odd prime p, the p-primary parts of refinements of the (imprimitive)
non-abelian Brumer and Brumer–Stark conjectures are implied by the equivariant Iwasawa
main conjecture (EIMC) for totally real fields. Crucially, this result does not depend on
the vanishing of the relevant Iwasawa μ-invariant. In combination with the authors’ previous
work on the EIMC, this leads to unconditional proofs of the non-abelian Brumer andBrumer–
Stark conjectures in many new cases.

Keywords Iwasawa main conjecture · Brumer’s conjecture · Stark’s conjectures ·
Equivariant L-values · Class groups · Annihilation

Mathematics Subject Classification 11R23 · 11R42

1 Introduction

Let K be a totally real number field and let L be a CM field such that L/K is a finite Galois
extension; in this article, such an extension will be called a (finite Galois) CM-extension. Let
G = Gal(L/K ). To each finite set S of places of K containing all the archimedean places,
one can associate a so-called ‘Stickelberger element’ θS(L/K ) in the centre of the complex
group algebra C[G]. This element is constructed from values at s = 0 of S-truncated Artin
L-functions attached to the complex characters of G. Let μL and clL denote the roots of
unity and the class group of L , respectively. Assume further that S contains the set of all
finite primes of K that ramify in L/K .
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Now suppose that G is abelian. It was independently shown in [1,8,12] that we have the
containment

AnnZ[G](μL )θS(L/K ) ⊆ Z[G].
Moreover, Brumer’s conjecture asserts that in fact

AnnZ[G](μL )θS(L/K ) ⊆ AnnZ[G](clL).

The Brumer–Stark conjecture is a refinement of Brumer’s conjecture that not only asserts
that the class of a given ideal is annihilated in clL , so it becomes a principal ideal, but also
gives information about a generator of that ideal.

In the case that G is non-abelian, the second named author [30] formulated generalisa-
tions of the Brumer and Brumer–Stark conjectures and of the so-called strong Brumer–Stark
property. (Independently, Burns [6] formulated non-abelian versions of the Brumer and
Brumer–Stark conjectures in even greater generality.) The extension L/K satisfies the
strong Brumer–Stark property if certain Stickelberger elements are contained in the (non-
commutative) Fitting invariants of corresponding ray class groups. It is important to note that
this property does not hold in general, even in the case that G is abelian, as follows from
results of Greither and Kurihara [15]. If this property does hold, however, it also implies
the validity of the (non-abelian) Brumer and Brumer–Stark conjectures. The main result of
this article is that for an odd prime p, the relevant case of the equivariant Iwasawa main
conjecture (EIMC) for totally real fields implies the p-primary part of a dual version of the
strong Brumer–Stark property under the hypotheses that S contains all the p-adic places of
K and that a certain identity between complex and p-adic Artin L-functions at s = 0 holds.
This identity is conjecturally always true and, in particular, is satisfied when G is monomial
(i.e. every complex irreducible character of G is induced from a one-dimensional character
of a subgroup); moreover, every metabelian or supersoluble finite group is monomial.

When the relevant classical Iwasawa μ-invariant vanishes, the above result on the dual
version of the strong Brumer–Stark property has been already established by the second
named author [33]; this result was in turn a non-abelian generalisation ofwork ofGreither and
Popescu [17]. (A weaker version of the result of [17] specialised to the setting of Brumer’s
conjecture was previously shown by Nguyen Quang Do [36].) The main reason for the
assumption of the vanishing of the μ-invariant in [17,33] is, of course, to ensure the validity
of the EIMC. However, both articles use a version of the EIMC involving the Tate module of
a certain Iwasawa-theoretic abstract 1-motive, which requires the vanishing of μ even for its
formulation. This formulation is inspired by Deligne’s theory of 1-motives [11] and previous
work of Greither and Popescu [16] on the Galois module structure of p-adic realisations of
Picard 1-motives. Our new approach is different to, though partly inspired by, the approaches
in [17,33]. More precisely, we reinterpret certain well-known exact sequences involving ray
class groups in terms of étale and flat cohomology. Taking direct limits along the cyclotomic
Zp-extension of L , this allows us to establish a concrete link between the canonical complex
occurring in the EIMC and certain ray class groups. The theory of non-commutative Fitting
invariants then plays a crucial role in the Iwasawa co-descent.

This article is organised as follows. In Sect. 2 we review some algebraic background
material. In particular, we discuss non-commutative Fitting invariants, whichwere introduced
by the second named author in [29] and were further developed by both the present authors
in [23]. In Sect. 3 we recall the statements of the non-abelian Brumer and Brumer–Stark
conjectures and show that a dual version of the strong Brumer–Stark property implies both
of these conjectures. Then in Sect. 4 we recall a reformulation of the EIMC introduced in
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[25]. The material presented up until this point then allows us to state the main theorem of
this article (discussed above) in Sect. 5. The next three sections are then devoted to the proof
of this result. First we present further auxiliary results on Iwasawa algebras and the EIMC
in Sect. 6. We then complete the proof in Sects. 7 and 8 by working with complexes at the
finite and infinite levels, respectively. In Sect. 9 we recall the notion of hybrid p-adic group
rings introduced in [24]. This notion was further developed in [25] where it played a key role
in obtaining the first unconditional proofs of the EIMC in cases where the vanishing of the
relevant μ-invariant is not known. Finally, in Sect. 10 we combine these results on the EIMC
with the main result of this article to give unconditional proofs of the non-abelian Brumer
and Brumer–Stark conjectures in many new cases.

Notation and conventions

All rings are assumed to have an identity element and all modules are assumed to be left
modules unless otherwise stated. We fix the following notation:

R× the group of units of a ring R
ζ(R) the centre of a ring R
AnnR(M) the annihilator of the R-module M
Mm×n(R) the set of all m × n matrices with entries in a ring R
ζn a primitive nth root of unity
K∞ the cyclotomic Zp-extension of the number field K
μK the roots of unity of a field K
clK the class group of a number field K
K c an algebraic closure of a field K
K+ the maximal totally real subfield of a field K embeddable into C

IrrF (G) the set of F-irreducible characters of the (pro)-finite group G (with open kernel)
where F is a field of characteristic 0

χ̌ the character contragredient to χ

2 Algebraic preliminaries

2.1 Algebraic K-theory

Let R be a noetherian integral domain with field of fractions E . Let A be a finite-dimensional
semisimple E-algebra and let A be an R-order in A. Let PMod(A) denote the category of
finitely generated projective (left) A-modules. We write K0(A) for the Grothendieck group
of PMod(A) (see [10, Sect. 38]) and K1(A) for the Whitehead group (see [10, Sect. 40]).
Let K0(A, A) denote the relative algebraic K -group associated to the ring homomorphism
A ↪→ A. We recall that K0(A, A) is an abelian group with generators [X , g, Y ] where X and
Y are finitely generated projectiveA-modules and g : E⊗R X → E⊗R Y is an isomorphism
of A-modules; for a full description in terms of generators and relations, we refer the reader to
[45, p. 215]. Moreover, there is a long exact sequence of relative K -theory (see [45, Chapter
15])

K1(A) −→ K1(A)
∂−→ K0(A, A)

ρ−→ K0(A) −→ K0(A). (2.1)
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The reduced norm map nr = nrA : A → ζ(A) is defined componentwise on the Wedderburn
decomposition of A and extends to matrix rings over A (see [9, Sect. 7D]); thus it induces a
map K1(A) → ζ(A)×, which we also denote by nr.

Let Cb(PMod(A)) be the category of bounded complexes of finitely generated projective
A-modules. Then K0(A, A) identifies with the Grothendieck group whose generators are
[C•], where C• is an object of the category Cbtor(PMod(A)) of bounded complexes of finitely
generated projectiveA-modules whose cohomologymodules are R-torsion, and the relations
are as follows: [C•] = 0 if C• is acyclic, and [C•

2 ] = [C•
1 ] + [C•

3 ] for every short exact
sequence

0 −→ C•
1 −→ C•

2 −→ C•
3 −→ 0 (2.2)

in Cbtor(PMod(A)) (see [49, Chapter 2] or [44, Sect. 2], for example).
Let D(A) be the derived category of A-modules. A complex of A-modules is said to

be perfect if it is isomorphic in D(A) to an element of Cb(PMod(A)). We denote the full
triangulated subcategory of D(A) comprising perfect complexes by Dperf (A), and the full
triangulated subcategory comprising perfect complexes whose cohomology modules are
R-torsion by Dperf

tor (A). Then any object of Dperf
tor (A) defines an element in K0(A, A). In par-

ticular, a finitely generated R-torsion A-module M of finite projective dimension considered
as a complex concentrated in degree 0 defines an element [M] ∈ K0(A, A).

2.2 Denominator ideals

Let R be a noetherian integrally closed domain with field of fractions E . Let A be a finite-
dimensional separable E-algebra and letA be an R-order in A.We choose amaximal R-order
M such thatA ⊆ M ⊆ A. Following [23, Sect. 3.6], for every matrix H ∈ Mb×b(A) there is
a generalised adjoint matrix H∗ ∈ Mb×b(M) such that H∗H = HH∗ = nr(H) · 1b×b (note
that the conventions in [23, Sect. 3.6] slightly differ from those in [29]). If H̃ ∈ Mb×b(A) is
a second matrix, then (H H̃)∗ = H̃∗H∗. We define

H(A) := {x ∈ ζ(A) | xH∗ ∈ Mn×n(A)∀H ∈ Mn×n(A)∀n ∈ N},
I(A) := 〈nr(H) | H ∈ Mn×n(A), n ∈ N〉ζ(A).

One can show that these are R-lattices satisfying

H(A) · I(A) = H(A) ⊆ ζ(A) ⊆ I(A) ⊆ ζ(M). (2.3)

Hence H(A) is an ideal in the commutative R-order I(A). We will refer to H(A) as the
denominator ideal of the R-order A. If p is a prime and G is a finite group, we set

I(G) := I(Z[G]), Ip(G) := I(Zp[G]),
H(G) := H(Z[G]),Hp(G) := H(Zp[G]).

The first claim of the following result is a special case of [23, Proposition 4.4]. The second
claim then follows easily from (2.3).

Proposition 2.1 Let p be prime and G be a finite group. Then Hp(G) = ζ(Zp[G]) if and
only if p does not divide the order of the commutator subgroup of G. Moreover, in this case
we have Ip(G) = ζ(Zp[G]).

The importance of the ζ(A)-module H(A) comes from its relation to non-commutative
Fitting invariants, which we introduce now.
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2.3 Non-commutative Fitting invariants

For further details on the following material we refer the reader to [29] and [23]. Let A be a
finite-dimensional separable algebra over a field E and A be an R-order in A, where R is an
integrally closed complete commutative noetherian local domain with field of fractions E .
For example, if p is a prime we can take A to be a p-adic group ring Zp[G] where G is a
finite group or to be a completed group algebra Zp�G� where G is a one-dimensional p-adic
Lie group.

Let X and Y be two ζ(A)-submodules of an R-torsionfree ζ(A)-module. Then X and Y
are said to be nr(A)-equivalent if there exists a positive integer n and a matrix U ∈ GLn(A)

such that X = nr(U ) · Y . We denote the corresponding equivalence class by [X ]nr(A). We
say that X is nr(A)-contained in Y (and write [X ]nr(A) ⊆ [Y ]nr(A)) if for all X ′ ∈ [X ]nr(A)

there exists Y ′ ∈ [Y ]nr(A) such that X ′ ⊆ Y ′. Note that it suffices to check this property for
one X0 ∈ [X ]nr(A). We will say that x is contained in [X ]nr(A) (and write x ∈ [X ]nr(A)) if
there is X0 ∈ [X ]nr(A) such that x ∈ X0.

Further suppose that X and Y are in fact ζ(A)-submodules of ζ(A). Let X · Y denote
the ζ(A)-submodule of ζ(A) generated the set {xy | x ∈ X , y ∈ Y }. Then the product
[X ]nr(A) · [Y ]nr(A) := [X · Y ]nr(A) is well-defined. If e ∈ A is a central idempotent then
e[X ]nr(A) := [eX ]nr(eA) is also well-defined. Moreover, if X = 〈α〉ζ(A) is generated by a
single element α ∈ ζ(A)×, then we set [X ]−1

nr(A)
:= [〈α−1〉ζ(A)]nr(A).

Now let M be a (left) A-module with finite presentation

Aa h−→ Ab −→ M −→ 0. (2.4)

We identify the homomorphism h with the corresponding matrix in Ma×b(A) and define
S(h) = Sb(h) to be the set of all b × b submatrices of h if a ≥ b. In the case a = b we call
(2.4) a quadratic presentation. The Fitting invariant of h over A is defined to be

FittA(h) =
{ [0]nr(A) if a < b[〈nr(H) | H ∈ S(h)〉ζ(A)

]
nr(A)

if a ≥ b.

We call FittA(h) a Fitting invariant of M over A. One defines Fittmax
A (M) to be the unique

Fitting invariant ofM overAwhich is maximal among all Fitting invariants ofM with respect
to the partial order “⊆”. If M admits a quadratic presentation h, we set

FittA(M) := FittA(h), (2.5)

which can be shown to be independent of the chosen quadratic presentation.
Now let C• ∈ Dperf

tor (A) and recall from Sect. 2.1 that C• defines an element [C•] in the
relative algebraic K -group K0(A, A). Recall the long exact sequence of K -theory (2.1). If
ρ([C•]) = 0, we choose x ∈ K1(A) such that ∂(x) = [C•] and define

FittA(C
•) := [〈nr(x)〉ζ(A)

]
nr(A)

. (2.6)

Note that this iswell-definedby the exactness of (2.1). LetC•
i ∈ Dperf

tor (A) such thatρ([C•
i ]) =

0 for i = 1, 2, 3. Then if [C•
2 ] = [C•

1 ] + [C•
3 ] in K0(A, A) (this is the case in the situation of

(2.2), for example) it is straightforward to show that

FittA(C
•
2 ) = FittA(C

•
1 ) · FittA(C•

3 ). (2.7)

To put this in context, we note that if C• is isomorphic in D(A) to a complex P−1 → P0

concentrated in degrees−1 and 0 such that P−1 and P0 are both finitely generated R-torsion
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A-modules of projective dimension at most 1, then

FittA(C
•) = FittA(P

0 : P−1), (2.8)

where the righthand side denotes the relative Fitting invariant of [29, Definition 3.6].

Remark 2.2 Let M be a finitely generated R-torsion A-module of projective dimension at
most 1. Then it is straightforward to show that M admits a quadratic presentation if and only
if ρ([M]) = 0 (see [29, p. 2764]).

Remark 2.3 Let M be a finitely generated R-torsion A-module of projective dimension at
most 1 and assume that M admits a quadratic presentation. Then one can consider M as a
complex concentrated in degree 0 defining an element of Dperf

tor (A), and one can show that
the definitions of FittA(M) given by (2.5) and (2.6) coincide in this situation.

Non-commutative Fitting invariants provide a powerful tool for computing annihilators;
for the following result see [23, Theorem 3.3] or [29, Theorem 4.2].

Theorem 2.4 If M is a finitely presented A-module, then

H(A) · Fittmax
A (M) ⊆ Annζ(A)(M). (2.9)

Remark 2.5 The inclusion (2.9) should be interpreted as follows: if x ∈ ζ(M) such that
x ∈ Fittmax

A (M) (in the sense above) and h ∈ H(A) then h · x ∈ Annζ(A)(M).

We list some properties of non-commutative Fitting invariants which we will use later.

Lemma 2.6 Let M and M ′ be finitely presented A-modules and let e ∈ A be a central
idempotent. Then the following statements hold.

(i) If M � M ′ is a surjection then Fittmax
A (M) ⊆ Fittmax

A (M ′).
(ii) If M and M ′ admit quadratic presentations then so does M⊕M ′ and we have an equality

FittA(M) · FittA(M ′) = FittA(M ⊕ M ′).
(iii) We have an inclusion eFittmax

A (M) ⊆ Fittmax
eA (eA ⊗A M) with equality if e ∈ A.

Proof For (i) see [23, Theorem 3.1 (i)]. Part (ii) is a special case of [23, Theorem 3.1 (iii)].
The first claim of part (iii) is [23, Theorem 3.1 (vi)], and the second claim follows easily
from the definition of Fitting invariants and the decomposition A = eA ⊕ (1 − e)A. ��
Lemma 2.7 Let A and B be finitely generated R-torsion A-modules of projective dimension
at most 1 and with quadratic presentations. Let A → B be a complex concentrated in degrees
−1 and 0. Then recalling Remark 2.3 we have

FittA(B : A) = FittA(A → B) = Fitt−1
A (A) · FittA(B).

Proof The first equality follows from (2.8). We consider A and B as complexes concentrated
in degree 0. Then we have a short exact sequence of complexes

0 −→ B −→ (A → B) −→ A[1] −→ 0,

where A[1] is concentrated in degree −1. Hence by (2.2) we have

[A → B] = [B] + [A[1]] = [B] − [A],
in K0(A, A) and so the desired result now follows from (2.7). ��
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3 The non-abelian Brumer–Stark conjecture

3.1 Ray class groups

Let L/K be a finite Galois extension of number fields with Galois group G. For each place
v of K we fix a place w of L above v and write Gw and Iw for the decomposition group
and inertia subgroup of L/K at w, respectively. When w is a finite place, we choose a lift
φw ∈ Gw of the Frobenius automorphism at w; moreover, we write Pw for the associated
prime ideal in L and ordw for the associated valuation.

For any set S of places of K , we write S(L) for the set of places of L which lie above
those in S. Now let S be a finite set of places of K containing the set S∞ = S∞(K ) of
archimedean places and let T be a second finite set of places of K such that S ∩ T = ∅.
We write clTL for the ray class group of L associated to the modulus MT

L := ∏
w∈T (L)Pw

and OL,S for the ring of S(L)-integers in L . Let OL := OL,S∞ be the ring of integers in
L . Let S f be the set of all finite primes in S; then there is a natural map ZS f (L) → clTL
which sends each place w ∈ S f (L) to the corresponding class [Pw] ∈ clTL . We denote the
cokernel of this map by clTL,S . Moreover, we denote the S(L)-units of L by EL,S and define

ET
L,S := {

x ∈ EL,S : x ≡ 1 mod MT
L

}
. All these modules are equipped with a natural G-

action and we have the following exact sequences of Z[G]-modules. If 
 is a subset of S
containing S∞, then we have

0 −→ ET
L,
 −→ ET

L,S
vL−→ Z[S(L)−
(L)] −→ clTL,
 −→ clTL,S −→ 0, (3.1)

where vL(x) := ∑
w∈S(L)−
(L) ordw(x)w for every x ∈ ET

L,S , and

0 −→ ET
L,S −→ EL,S −→ (OL,S/M

T
L )

× ν−→ clTL,S −→ clL,S −→ 0, (3.2)

where the map ν lifts an element x ∈ (OL,S/M
T
L )

× to x ∈ OL,S and sends it to the ideal
class [(x)] ∈ clTL,S of the principal ideal (x).

3.2 Equivariant Artin L-values

Let S be a finite set of places of K containing S∞. Let IrrC(G) denote the set of complex
irreducible characters of G. For χ ∈ IrrC(G), we write LS(s, χ) for the S-truncated Artin
L-function attached to χ and S (see [46, Chapter 0, Sect. 4]). Recall that there is a canonical
isomorphism ζ(C[G]) � ∏

χ∈IrrC(G) C. We define the equivariant S-truncated Artin L-
function to be the meromorphic ζ(C[G])-valued function

LS(s) := (LS(s, χ))χ∈IrrC(G).

For χ ∈ IrrC(G), let Vχ be a left C[G]-module with character χ . If T is a second finite set
of places of K such that S ∩ T = ∅, we define

δT (s, χ) =
∏
v∈T

det(1 − N (v)1−sφ−1
w | V Iw

χ ) and δT (s) := (δT (s, χ))χ∈IrrC(G).

We set

S,T (s) := δT (s) · LS(s)
�,

where � : C[G] → C[G] denotes the anti-involution induced by g �→ g−1 for g ∈ G.
Note that LS(s)� = (LS(s, χ̌))χ∈IrrC(G) where χ̌ denotes the character contragredient to χ .
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The functions S,T (s) are the so-called (S, T )-modified G-equivariant L-functions and we
define Stickelberger elements

θTS (L/K ) = θTS := S,T (0) ∈ ζ(Q[G]).
Note that a priori we only have θTS ∈ ζ(C[G]), but by a result of Siegel [43] we know that
θTS in fact belongs to ζ(Q[G]). If T is empty, we abbreviate θTS to θS .

Let p be a prime and let ι : Cp → C be a field isomorphism. Then the image of θTS under
the canonical maps

ζ(Q[G]) ↪→ ζ(Qp[G]) ↪→ ζ(Cp[G]) ∼= ∏
χ∈IrrCp (G)

Cp (3.3)

is given by (ι−1(δT (0, ι ◦ χ)LS(0, ι ◦ χ̌ )))χ∈IrrCp (G) and this is independent of the choice of

ι. We shall henceforth consider θTS as an element of ζ(Qp[G]) or ζ(Cp[G]) via (3.3) when
convenient. Moreover, we shall often drop ι and ι−1 from the notation.

3.3 Reduction to CM-extensions

Let χ ∈ IrrC(G). The order of vanishing formula for LS(s, χ) at s = 0 (see [46, Chapter
I, Proposition 3.4]) shows that if either χ is non-trivial and S contains an (infinite) place v
such that VGw

χ �= 0 or χ is trivial and |S| > 1 then the χ-part of θTS vanishes. Hence if θTS
is non-trivial, precisely one of the following possibilities occurs: (i) K is totally real and L
is totally complex, (ii) K is an imaginary quadratic field, L/K is unramified and S = S∞
or (iii) L = K = Q and S = S∞. In case (iii), the Brumer–Stark conjecture is trivial. For
case (ii), see [17, Remark 6.3] for G abelian; the situation in which G is non-abelian has
been considered recently by Nomura [35]. Finally, case (i) can often be reduced to the case
that L is a CM-field (see [17, Proposition 6.4] for G abelian; the same argument works for
general G under the assumptions of [34, Proposition 4.1] with r = 0). Therefore, we shall
henceforth assume that L/K is a CM-extension, that is, L is a CM-field, K is totally real and
complex conjugation induces a unique automorphism j of L lying in the centre of G.

3.4 The non-abelian Brumer and Brumer–Stark conjectures

Assume that L/K is a CM-extension and let Sram = Sram(L/K ) be the set of all places of
K that ramify in L/K .

Hypothesis Let S and T be finite sets of places of K . We say that Hyp(S, T ) is satisfied if
(i) Sram ∪ S∞ ⊆ S, (ii) S ∩ T = ∅, and (iii) ET

L,S is torsionfree.

Remark 3.1 Condition (iii) means that there are no roots of unity of L congruent to 1 modulo
all primes in T (L). In particular, this will be satisfied if T contains primes of two different
residue characteristics or at least one prime of sufficiently large norm.

We choose a maximal orderM(G) such that Z[G] ⊆ M(G) ⊆ Q[G]. For a fixed choice
of S we define AS to be the ζ(Z[G])-submodule of ζ(M(G)) generated by the elements
δT (0), where T runs through the finite sets of places of K such that Hyp(S∪ Sram ∪ S∞, T ) is
satisfied. The following conjecture was formulated in [30] and is a non-abelian generalisation
of Brumer’s conjecture.
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Conjecture 3.2 (B(L/K , S)) Let S be a finite set of places of K containing Sram ∪ S∞. Then
ASθS ⊆ I(G) and for each x ∈ H(G) we have

x · ASθS ⊆ AnnZ[G](clL).

Remark 3.3 If G is abelian, [46, Lemma 1.1, p. 82] implies that AS = AnnZ[G](μL ). In this
case the results in [1,8,12] each imply that ASθS ⊆ I(G) = Z[G] and, sinceH(G) = Z[G]
in this case, Conjecture 3.2 recovers Brumer’s conjecture.

Remark 3.4 If M is a finitely generated Z-module and p is a prime, we define its p-part to be
M(p) := Zp ⊗Z M . Replacing the class group clL by clL(p) for each prime p, Conjecture
B(L/K , S) naturally decomposes into local conjectures B(L/K , S, p). It is then possible to
replace H(G) by Hp(G) by [30, Lemma 1.4]. Moreover, if p does not divide the order of
the commutator subgroup of G then Hp(G) = Ip(G) = ζ(Zp[G]) by Proposition 2.1 and
so after the hypotheses on S the statement of the local conjecture simplifies to

ASθS ⊆ Annζ(Zp[G])(clL(p)).

Remark 3.5 Burns [6] has also formulated a conjecture which generalises many refined Stark
conjectures to the non-abelian situation. In particular, it implies Conjecture 3.2 (see [6,
Proposition 3.5.1]).

For α ∈ L× we define

Sα := {v finite place of K | ordv(NL/K (α)) > 0}.
We call α an anti-unit if α1+ j = 1. Let ωL := nr(|μL |). The following is a non-abelian
generalisation of the Brumer–Stark conjecture ([30, Conjecture 2.7]).

Conjecture 3.6 (BS(L/K , S)) Let S be a finite set of places of K containing Sram ∪ S∞.
Then ωL · θS ∈ I(G) and for each x ∈ H(G) and each fractional ideal a of L, there is an
anti-unit α = α(x, a, S) ∈ L× such that

ax ·ωL ·θS = (α)

and for each finite set T of primes of K such that Hyp(S ∪ Sα, T ) is satisfied there is an
αT ∈ ET

L,Sα
such that

αz·δT (0) = α
z·ωL
T (3.4)

for each z ∈ H(G).

Remark 3.7 If G is abelian, we have I(G) = H(G) = Z[G] and ωL = |μL |. Hence it
suffices to treat the case x = z = 1 in this situation. Then [46, Proposition 1.2, p. 83]
states that condition (3.4) on the anti-unit α is equivalent to the assertion that the extension
L(α1/ωL )/K is abelian.

Remark 3.8 As in Remark 3.4, we obtain local conjectures BS(L/K , S, p) for each prime
p. Again, these local conjectures simplify to a version without denominator ideals in the case
the p does not divide the order of the commutator subgroup of G.
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3.5 A criterion involving Pontryagin duals and Fitting invariants

For an abstract abelian group A we write A∨ for Hom(A,Q/Z). This induces an equivalence
between the categories of abelian profinite groups and discrete abelian torsion groups (see [37,
Theorem 1.1.11] and the discussion thereafter). For a finitely generated Zp[G]-module M ,
we have M∨ = HomZp (M,Qp/Zp), and this is endowed with the contragredient G-action
(g f )(m) = f (g−1m) for f ∈ M∨, g ∈ G and m ∈ M .

For a G-module M we write M+ and M− for the submodules of M upon which j acts
as 1 and −1, respectively. In particular, we shall be interested in (clTL,S(p))

− for odd primes

p; we will abbreviate this module to AT
L,S when p is clear from context. Note that AT

L,S is a
finite module over the ring Zp[G]− := Zp[G]/(1+ j). We shall need the following variant
of [30, Proposition 3.9].

Proposition 3.9 Let S be a finite set of places of K containing Sram ∪ S∞ and let p be an
odd prime. Suppose that for every finite set T of places of K such that Hyp(S, T ) is satisfied
we have

(θTS )
� ∈ Fittmax

Zp[G]−((A
T
L )

∨). (3.5)

Then both BS(L/K , S, p) and B(L/K , S, p) are true.

Remark 3.10 The containment (3.5) may be considered as a ‘dual version’ of the so-called
strong Brumer–Stark property, which is fulfilled if θTS ∈ Fittmax

Zp[G]−(A
T
L ) (see [30, Definition

3.6]).

Proof of Proposition 3.9 This has already been shown within the proof of [33, Corollary 4.6],
but we repeat the argument here for the convenience of the reader. Since BS(L/K , S, p)
implies B(L/K , S, p) by [30, Lemma 2.12], we need only treat the case of the Brumer–
Stark conjecture. Moreover, [30, Proposition 3.9] says that BS(L/K , S, p) is implied by
the strong Brumer–Stark property. However, the proof of [30, Proposition 3.9] carries over
unchanged once we observe that

AnnZp[G]−(M) = AnnZp[G]−(M∨)�

for every finite Zp[G]−-module M . ��

4 The equivariant Iwasawamain conjecture

4.1 Certain one-dimensional p-adic Lie extensions

Let p be an odd prime and let K be a number field. Let L/K be a Galois extension such that
L contains the cyclotomic Zp-extension K∞ of K and [L : K∞] is finite. Then the Galois
group G := Gal(L/K ) is a one-dimensional p-adic Lie group. Let H = Gal(L/K∞) and let
�K = Gal(K∞/K ). Let γK be a topological generator of �K � Zp . The argument given in
[39, Sect. 1] shows there exists a lift γ ∈ G of γK that induces a splitting of the short exact
sequence

1 −→ H −→ G −→ �K −→ 1.

Thus we obtain a semidirect product G = H � � where � � Zp is the pro-cyclic subgroup
of G topologically generated by γ . Since any homomorphism � → Aut(H)must have open
kernel, we may choose a natural number n such that γ pn is central in G. We fix such an n
and set �0 := � pn ; hence �0 � Zp is contained in the centre of G.
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4.2 The Iwasawa algebra as an order

The Iwasawa algebra of G is

�(G) := Zp�G� = lim←− Zp[G/N ],
where the inverse limit is taken over all open normal subgroups N of G. If F is a finite field
extension of Qp with ring of integers O = OF , we put �O(G) := O ⊗Zp �(G) = O�G�.

There is a ring isomorphism R := O��0� � O�T � induced by γ pn �→ 1 + T where O�T �

denotes the power series ring in one variable over O. If we view�O(G) as an R-module (or
indeed as a left R[H ]-module), there is a decomposition

�O(G) =
pn−1⊕
i=0

R[H ]γ i . (4.1)

Hence �O(G) is finitely generated as an R-module and is an R-order in the separable E :=
Quot(R)-algebra QF (G), the total ring of fractions of �O(G), obtained from �O(G) by
adjoining inverses of all central regular elements. Note thatQF (G) = E ⊗R �

O(G) and that
by [39, Lemma 1] we have QF (G) = F ⊗Qp Q(G), where Q(G) := QQp (G).

4.3 An exact sequence of algebraic K-groups

Specialising (2.1) to the situation A = Q(G) andA = �(G) and applying [50, Corollary 3.8]
(see [25, Sect. 4.1] for further explanation) we obtain the exact sequence

K1(�(G)) −→ K1(Q(G)) ∂−→ K0(�(G),Q(G)) ρ−→ 0. (4.2)

Remark 4.1 If M is a finitely generated R-torsion �(G)-module of projective dimension at
most 1, then combining the triviality of ρ in (4.2) with Remark 2.2 shows that M admits a
quadratic presentation.

4.4 Characters and central primitive idempotents

Fix a character χ ∈ IrrQc
p
(G) (i.e. an irreducible Q

c
p-valued character of G with open kernel)

and let η be an irreducible constituent of resGHχ . Then G acts on η as ηg(h) = η(g−1hg) for
g ∈ G, h ∈ H , and following [39, Sect. 2] we set

St(η) := {g ∈ G : ηg = η}, e(η) := η(1)

|H |
∑
h∈H

η(h−1)h, eχ :=
∑

η|resGHχ
e(η).

By [39, Corollary to Proposition 6] eχ is a primitive central idempotent of Qc(G) :=
Q

c
p ⊗Qp Q(G). In fact, every primitive central idempotent of Qc(G) is of this form and

eχ = eχ ′ if and only if χ = χ ′ ⊗ ρ for some character ρ of G of type W (i.e. resGHρ = 1).
Let wχ = [G : St(η)] and note that this is a power of p since H is a subgroup of St(η).

Let F/Qp be a finite extension over which both characters χ and η have realisations. Let
Vχ denote a realisation of χ over F . By [39, Propositions 5 and 6], there exists a unique
element γχ ∈ ζ(QF (G)eχ ) such that γχ acts trivially on Vχ and γχ = gχcχ with gχ ∈ G
mapping to γ

wχ

K mod H and with cχ ∈ (F[H ]eχ )×. Moreover, γχ generates a pro-cyclic

p-subgroup �χ of QF (G)eχ and induces an isomorphism QF (�χ )
�−→ ζ(QF (G)eχ ).
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4.5 Determinants and reduced norms

Following [39, Proposition 6], we define a map

jχ : ζ(QF (G)) � ζ(QF (G)eχ ) � QF (�χ ) → QF (�K ),

where the last arrow is induced by mapping γχ to γ
wχ

K . It follows from ibid. that jχ is
independent of the choice of γK and that for every matrix  ∈ Mn×n(Q(G)) we have

jχ (nr()) = detQF (�K )
( | HomF[H ](Vχ ,QF (G)n)). (4.3)

Here, acts on f ∈ HomF[H ](Vχ ,QF (G)n) via right multiplication, and γK acts on the left
via (γK f )(v) = γ · f (γ−1v) for all v ∈ Vχ which is easily seen to be independent of the
choice of γ . Hence the map

Det( )(χ) : K1(Q(G)) → QF (�K )
×

[P, α] �→ detQF (�K )
(α | HomF[H ](Vχ , F ⊗Qp P)),

where P is a projectiveQ(G)-module andα aQ(G)-automorphismof P , is just jχ◦nr (see [39,
Sect. 3, p. 558]). If ρ is a character of G of typeW (i.e. resGHρ = 1) then we denote by ρ� the
automorphism of the fieldQc(�K ) induced by ρ�(γK ) = ρ(γK )γK . Moreover, we denote the
additive group generated by allQc

p-valued characters of G with open kernel by Rp(G); finally,
Hom∗(Rp(G),Qc(�K )

×) is the group of all homomorphisms f : Rp(G) → Qc(�K )
×

satisfying

f (χ ⊗ ρ) = ρ�( f (χ)) for all characters ρ of type W and
f (σ χ) = σ( f (χ)) for all Galois automorphisms σ ∈ Gal(Qc

p/Qp).

By [39, Proof of Theorem 8] we have an isomorphism

ζ(Q(G))× � Hom∗(Rp(G),Qc(�K )
×)

x �→ [χ �→ jχ (x)].
By [39, Theorem 8] the map  �→ [χ �→ Det()(χ)] defines a homomorphism

Det : K1(Q(G)) −→ Hom∗(Rp(G),Qc(�K )
×)

such that we obtain a commutative triangle

K1(Q(G))
nr

�����
���

���
�

Det

�����
����

����
���

ζ(Q(G))× ∼ �� Hom∗(Rp(G),Qc(�K )
×).

(4.4)

4.6 The p-adic cyclotomic character and its projections

Let χcyc be the p-adic cyclotomic character

χcyc : Gal(L(ζp)/K ) −→ Z
×
p ,

defined by σ(ζ ) = ζχcyc(σ ) for any σ ∈ Gal(L(ζp)/K ) and any p-power root of unity ζ .
Let ω and κ denote the composition of χcyc with the projections onto the first and second
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factors of the canonical decomposition Z
×
p = μp−1 × (1 + pZp), respectively; thus ω is

the Teichmüller character. We note that κ factors through �K (and thus also through G) and
by abuse of notation we also use κ to denote the associated maps with these domains. We
put u := κ(γK ). For r ∈ N0 divisible by p − 1 (or more generally divisible by the degree
[L(ζp) : L]), up to the natural inclusion map of codomains, we have χr

cyc = κr .

4.7 Admissible one-dimensional p-adic Lie extensions

We henceforth assume that L/K is an admissible one-dimensional p-adic Lie extension. In
other words, in addition to the existing assumptions that p is an odd prime, K is a number
field, L/K is a Galois extension of K such that L contains the cyclotomic Zp-extension K∞
of K and [L : K∞] is finite, we now further assume that L is totally real. Clearly, this forces
K to be totally real, which had not been assumed previously.

4.8 Power series and p-adic Artin L-functions

Fix a character χ ∈ IrrQc
p
(G). Each topological generator γK of �K permits the definition

of a power series Gχ,S(T ) ∈ Q
c
p ⊗Qp Quot(Zp�T �) by starting out from the Deligne-Ribet

power series for one-dimensional characters of open subgroups of G (see [12]; also see [1,8])
and then extending to the general case by using Brauer induction (see [18]). One then has an
equality

L p,S(1 − s, χ) = Gχ,S(us − 1)

Hχ (us − 1)
,

where L p,S(s, χ) denotes the ‘S-truncated p-adicArtin L-function’ attached toχ constructed
by Greenberg [18], and where, for irreducible χ , one has

Hχ (T ) =
{
χ(γK )(1 + T )− 1 if H ⊆ ker χ
1 otherwise.

Now [39, Proposition 11] implies that

LK ,S : χ �→ Gχ,S(γK − 1)

Hχ (γK − 1)

is independent of the topological generator γK and lies inHom∗(Rp(G),Qc(�K )
×). Diagram

(4.4) implies that there is a unique element �S = �S(L/K ) ∈ ζ(Q(G))× such that

jχ (�S) = LK ,S(χ)

for every χ ∈ IrrQc
p
(G).

4.9 The� = 0 hypothesis

Let S∞ be the set of archimedean places of K and let Sp be the set of places of K above p. Let
Sram = Sram(L/K ) be the (finite) set of places of K that ramify inL/K ; note that Sp ⊆ Sram.
Let S be a finite set of places of K containing Sram ∪ S∞. Let Mab

S (p) be the maximal abelian
pro-p-extension of L unramified outside S and let XS = Gal(Mab

S (p)/L). As usual G acts
on XS by g · x = g̃x g̃−1, where g ∈ G, and g̃ is any lift of g to Gal(Mab

S (p)/K ). This action
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extends to a left action of�(G) on XS . Since L is totally real, a result of Iwasawa [22] shows
that XS is finitely generated and torsion as a �(�0)-module.

Definition 4.2 We say that L/K satisfies the μ = 0 hypothesis if XS is finitely generated as
a Zp-module.

The μ = 0 hypothesis is conjecturally always true and is known to hold when L/Q is
abelian as follows fromwork of Ferrero andWashington [14]. For the relation to the classical
Iwasawa μ = 0 conjecture see [25, Remark 4.3], for instance. In the sequel, we shall not
assume the μ = 0 hypothesis for L/K except where explicitly stated.

4.10 A canonical complex

Let OL,S denote the ring of integers OL in L localised at all primes above those in S. There
is a canonical complex

C•
S(L/K ) := RHom(R�ét(Spec(OL,S),Qp/Zp),Qp/Zp),

where Qp/Zp denotes the constant sheaf of the abelian group Qp/Zp on the étale site of
Spec(OL,S). The cohomology groups are

Hi (C•
S(L/K )) �

⎧⎨
⎩

XS if i = −1
Zp if i = 0
0 if i �= −1, 0.

It follows from [13, Proposition 1.6.5] that C•
S(L/K ) belongs to Dperf

tor (�(G)). In particular,
C•
S(L/K ) defines a class [C•

S(L/K )] in K0(�(G),Q(G)). Note that C•
S(L/K ) and the com-

plex used by Ritter andWeiss (as constructed in [39]) become isomorphic inD(�(G)) by [33,
Theorem 2.4] (see also [47] for more on this topic). Hence it makes no essential difference
which of these complexes we use.

4.11 A reformulation of the equivariant Iwasawamain conjecture (EIMC)

We can now state a slight reformulation of the EIMC given in [25]. The relation of this
version to the framework [7] (as used in [26]) will be discussed in Sect. 6.2. Recall that p is
an odd prime and L/K is an admissible one-dimensional p-adic Lie extension.

Conjecture 4.3 (EIMC) There exists ζS ∈ K1(Q(G)) such that ∂(ζS) = −[C•
S(L/K )] and

nr(ζS) = �S.

It is also conjectured that ζS is unique, but we shall not be concerned with this issue here.
Moreover, it can be shown that the truth of Conjecture 4.3 is independent of the choice of S,
provided that S is finite and contains Sram ∪ S∞. Crucially, this version of the EIMC does
not require the μ = 0 hypothesis for its formulation. The following theorem has been shown
independently by Ritter and Weiss [40] and Kakde [26].

Theorem 4.4 If L/K satisfies the μ = 0 hypothesis then the EIMC holds for L/K.

By considering the cases in which theμ = 0 hypothesis is known, we obtain the following
corollary (see [25, Corollary 4.6] for further details).

Corollary 4.5 Let P be a Sylow p-subgroup of G. If LP/Q is abelian then the EIMC holds
for L/K.
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In [25], the present authors prove the EIMC in a number of cases where the μ = 0
hypothesis is not known. In Sect. 10, these will be combined with main results of the present
article (see Sect. 5.3) to give unconditional proofs of the non-abelianBrumer–Stark conjecture
in many new cases. For now, we only note the following result which relies heavily on a result
of Ritter and Weiss [39, Theorem 16].

Theorem 4.6 ([25, Theorem 4.12]) If p � |H | then the EIMC holds for L/K.

5 Statement of themain theorem and corollary

5.1 p-adic Artin L-functions and the interpolation property

Let K be a totally real number field and let GK = Gal(K c/K ) be its absolute Galois group.
Let p be an odd prime and let Sp denote the set of places of K above p. Let S∞ denote the
set of archimedean places of K and let S be a finite set of places of K such that Sp ∪ S∞ ⊆ S.

Let χ ∈ IrrQc
p
(GK ) and let Kχ be the extension of K attached to χ ; thus χ may be

considered as a character attached to a faithful representation of Gal(Kχ/K ) and Kχ/K is of
finite degree since χ has open kernel. Assume that Kχ is totally real. Let ι : Cp → C

be a choice of field isomorphism and let LS(s, ι ◦ χ) denote the S-truncated Artin
L-function attached to ι ◦ χ ∈ IrrC(Gal(Kχ/K )). For r ∈ Z with r ≥ 1 let LS(1 − r , χ) =
ι−1(LS(1 − r , ι ◦ χ)), which is in fact independent of the choice of ι (compare with the
discussion of Sect. 3.2). If χ is one-dimensional then for r ≥ 1 we have

L p,S(1 − r , χ) = LS(1 − r , χω−r ), (5.1)

where ω : Gal(K (ζp)/K )) −→ μp−1 ⊆ Z
×
p is the Teichmüller character. Using Brauer

induction, (5.1) can be extended to the case where χ is of arbitrary degree provided that
r ≥ 2 (see [18, Sect. 4]). However, if χ(1) > 1 and r = 1, this argument fails due to the
potential presence of trivial zeros. Nevertheless, it seems plausible that the identity

L p,S(0, χ) = LS(0, χω
−1) (5.2)

holds in general. As both sides are well-behaved with respect to direct sum, inflation and
inductionof characters, one can show that (5.2) does holdwhenχ is amonomial character, i.e.,
a character induced from a one-dimensional character of a subgroup (also see the discussion
in [20, Sect. 2]). From recent work of Burns [5, Theorem 5.2 (i)] it follows that the left hand
side of (5.2) vanishes whenever the right hand side does.

5.2 Equivariant p-adic Artin L-values

Let L/K be a finite Galois CM-extension of number fields with Galois group G. Let j ∈ G
denote complex conjugation. Let L+ = L〈 j〉 be the maximal totally real subfield of L and let
G+ = Gal(L+/K ) � G/〈 j〉. Let p be an odd prime. Recall that χ ∈ IrrC(G) or IrrCp (G)
is said to be even when χ( j) = χ(1), and odd when χ( j) = −χ(1). Let S be a finite set of
places of K such that Sp ∪ S∞ ⊆ S and let T be a second set of finite places of K such that
S ∩ T = ∅. In this situation, we define p-adic Stickelberger elements by

θTp,S(L/K ) = θTp,S := (θTp,S,χ )χ∈IrrCp (G),

θTp,S,χ :=
{
0 if χ is even
δT (0, χ) · L p,S(0, χ̌ω) if χ is odd.
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A finite group is said to be monomial if each of its (complex) irreducible characters is
monomial. Note that every finite metabelian or supersoluble group is monomial by [48,
Sect. 4.4, Theorem 4.8 (1)]).

Lemma 5.1 If G+ is monomial then θTp,S = θTS .

Proof Dropping ι from the notation (as we may), we recall from Sect. 3.2 that

θTS = (δT (0, χ) · LS(0, χ̌))χ∈IrrCp (G).

Thus for χ ∈ IrrCp (G) it suffices to show that LS(0, χ̌) = 0 when χ is even and LS(0, χ̌) =
L p,S(0, χ̌ω) when χ is odd. Since χ is even if and only if χ̌ is even, we may replace χ̌ by
χ in the previous sentence.

If χ is the trivial character then [46, Chapter I, Proposition 3.4] shows that the order of
vanishing of LS(s, χ) at s = 0 is |S| − 1 ≥ 1, and so LS(0, χ) = 0. If χ is even and
non-trivial the argument given in [46, top of p. 71] again shows that LS(0, χ) = 0.

Suppose that χ is odd and set ψ = χω. Then it suffices to show that L p,S(0, ψ) =
LS(0, ψω−1). Moreover,ψ is even and so may be considered as a character of the monomial
group G+. Hence the desired equality now follows from the discussion in Sect. 5.1 and the
appropriate substitution of symbols. ��

5.3 Statement of themain theorem and corollary

We are now in a position to state the main results of this article. In Sect. 10, these will be
combined with the authors’ previous work on the EIMC [25] to give unconditional proofs of
the non-abelian Brumer–Stark conjecture in many new cases.

Theorem 5.2 Let L/K be a finite Galois CM-extension of number fields with Galois group
G. Let S and T be two finite sets of places of K satisfying Hyp(S, T ). Let p be an odd prime
and let L(ζp)+∞ be the cyclotomic Zp-extension of L(ζp)+. Suppose that Sp ⊆ S and that
the EIMC holds for L(ζp)+∞/K. Then

(θTp,S)
� ∈ Fittmax

Zp[G]−((A
T
L )

∨). (5.3)

Remark 5.3 When the classical Iwasawa μ-invariant attached to L(ζp)∞ vanishes, Theorem
5.2 recovers [33, Theorem 4.5], which in turn is the non-abelian analogue of [17, Theorem
6.5]. The main reason why some version of the μ = 0 hypothesis is assumed in these results
is of course to ensure that the EIMC holds (see also [25, Remark 4.3]). However, both results
use a version of the EIMC that requires a μ = 0 hypothesis even for its formulation. For this
reason our proof is very different from (though partly inspired by) those in [17,33]. Note that
in [33, Sect. 4] the identity (5.2) is implicitly assumed to hold.

Corollary 5.4 Let L/K be a finite Galois CM-extension of number fields. Let p be an odd
prime and let S be a finite set of places of K such that Sp ∪ Sram(L/K ) ∪ S∞ ⊆ S. If
Gal(L+/K ) is monomial and the EIMC holds for L(ζp)+∞/K then both BS(L/K , S, p) and
B(L/K , S, p) are true.

Proof This is the combination of Proposition 3.9, Lemma 5.1, and Theorem 5.2. ��
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6 Iwasawa algebras and themain conjecture revisited

6.1 Certain maps between Iwasawa algebras

We assume the setup and notation of Sects. 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6. Fix a character
χ ∈ IrrQc

p
(G) and let η be an irreducible constituent of resGHχ . Let F/Qp be a finite extension

over which both characters χ and η have realisations. Recalling the notation of Sects. 4.4
and 4.6 in particular, for r ∈ Z we define maps

jrχ : ζ
(
QF (G)

)
� ζ

(
QF (G)eχ

)
� QF (�χ ) → QF (�K ),

where the last arrow is induced bymapping γχ to (urγK )wχ . Note that j0χ = jχ (see Sect. 4.5).
Now assume that ζp ∈ L. For s ∈ Z let x �→ t scyc(x) and x �→ t sω(x) be the automorphisms

on QF (G) induced by g �→ χ s
cyc(g)g and g �→ ωs(g)g for g ∈ G, respectively.

Lemma 6.1 Let r , s ∈ Z. Then for every x ∈ ζ(QF (G)) we have jrχ (t
s
cyc(x)) = jr+s

χωs (x).

Proof It follows easily from the definitions that wχ = wχω. We claim that

t1ω(γχω) = γχ . (6.1)

Write γχω = gχωcχω with gχω ∈ G and cχω ∈ (F[H ]eχω)× where gχω and cχω satisfy the
defining properties of γχω as given in Sect. 4.4. Put g′

χ := gχω and c′
χ := ω(gχω)t1ω(cχω).

It is then easily checked that g′
χc

′
χ has the defining properties of γχ , and thus t1ω(γχω) =

g′
χc

′
χ = γχ . This establishes (6.1). Recalling that u = κ(γK ) we compute

t1cyc(γχω) = χcyc(gχω)gχωt
1
ω(cχω) = uwχω t1ω(γχω) = uwχ γχ ,

where we have used (6.1) for the last equality. Finally, we have that

jrχ (t
s
cyc(γχωs )) = jrχ (u

wχ ·sγχ ) = uwχ ·s(urγK )wχ = (ur+sγK )
wχ = jr+s

χωs (γχωs )

for every r , s ∈ Z as desired. ��

6.2 Relation to the framework of [7]

We now discuss Conjecture 4.3 within the framework of the theory of [7, Sect. 3]. Let p be
an odd prime and let L/K be an admissible one-dimensional p-adic Lie extension. Let

π : G → GLn(O)
be a continuous homomorphism, where O = OF denotes the ring of integers of a finite
extension F of Qp and n is some positive integer. There is a ring homomorphism

�π : �(G) → Mn×n(�
O(�K )) (6.2)

induced by the continuous group homomorphism

G → (Mn×n(O)⊗Zp �(�K ))
× = GLn(�

O(�K ))

σ �→ π(σ)⊗ σ ,

where σ denotes the image of σ in G/H = �K . By [7, Lemma 3.3] the homomorphism (6.2)
extends to a ring homomorphism

�π : Q(G) → Mn×n(QF (�K ))
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and this in turn induces a homomorphism

�′
π : K1(Q(G)) → K1(Mn×n(QF (�K ))) = QF (�K )

×.

Let aug : �O(�K ) � O be the augmentation map and put p = ker(aug). Writing�O(�K )p
for the localisation of�O(�K ) at p, it is clear that aug naturally extends to a homomorphism
aug : �O(�K )p → F . One defines an evaluation map

φ : QF (�K ) → F ∪ {∞}
x �→

{
aug(x) if x ∈ �O(�K )p
∞ otherwise.

(6.3)

It is straightforward to show that for r ∈ Z we have

φ( jrχ (�S)) = L p,S(1 − r , χ). (6.4)

If ζ is an element of K1(Q(G)), we define ζ(π) to be φ(�′
π (ζ )). Conjecture 4.3 now

implies that there is an element ζS ∈ K1(Q(G)) such that ∂(ζS) = −[C•
S(L/K )] and for

each r ≥ 1 divisible by p − 1 and every irreducible Artin representation πχ of G with
character χ we have

ζS(πχκ
r ) = φ( jrχ (�S)) = L p,S(1 − r , χ) = LS(1 − r , χ),

where the first equality follows from [32, Lemma 2.3] (for the last equality see Sect. 5.1).

6.3 Non-commutative Fitting invariants over Iwasawa algebras

Let p be an odd prime and letG = H�� be a one-dimensional p-adic Lie group. Let�′ � Zp

be a normal subgroup of G such that�′ ∩H = 1. Then�′ is open in G and we setG := G/�′.
Thus every irreducible character χ of G may be viewed as an irreducible character of G
with open kernel. For any such character, let e(χ) := χ(1)|G|−1 ∑

g∈G χ(g−1)g be the
corresponding primitive central idempotent of Q

c
p[G]. Let �(G) := Zp�G� be the Iwasawa

algebra of G.
For the next result we note that themaps jχ andφ of Sects. 6.1 and 6.2 are purely algebraic

in nature and thus do not depend on the underlying Galois extension.

Proposition 6.2 ([29, Theorem 6.4]) Let M be a finitely presented �(G)-module. Let λ ∈
Fittmax

�(G)(M) and set

λ :=
∑

χ∈Irr
Q
c
p
(G)

φ( jχ (λ))e(χ) ∈ ζ(Qp[G]).

Then λ ∈ Fittmax
Zp[G](M�′),

7 Proof of Theorem 5.2: working at the finite level

7.1 Étale cohomology

Let L/K be a finite Galois extension of number fields with Galois group G and recall the
notation of Sect. 3.1. We fix two finite disjoint nonempty sets S and T of places of K such
that S contains S∞. We put US := Spec(OL,S) and ZT := Spec(OL,S/M

T
L ). Let Gm,X
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denote the étale sheaf defined by the group of units of a scheme X . The closed immersion
ι : ZT → US induces a canonical morphism Gm,US → ι∗Gm,ZT , which can be shown to
be surjective by considering stalks. Let G

T
m,US

denote the kernel of this morphism; then we
have an exact sequence of étale sheaves

0 −→ G
T
m,US

−→ Gm,US −→ ι∗Gm,ZT −→ 0. (7.1)

If w is a finite place of L , we let OL,w be the localisation of OL at w. We denote the field of
fractions of the Henselisation Oh

L,w of OL,w by Lw. If w is archimedean, we let Lw be the
completion of L at w. In both cases we let Br(Lw) be the Brauer group of Lw .

The main purpose of this subsection is to generalise the following result.

Proposition 7.1 Let S be a finite set of places of K containing S∞. Then

H0
ét(US,Gm,US ) � EL,S,

H1
ét(US,Gm,US ) � clL,S,

there is an exact sequence

0 −→ H2
ét(US,Gm,US ) −→

⊕
w∈S(L)

Br(Lw) −→ Q/Z −→ H3
ét(US,Gm,US ) −→ 0,

and for i ≥ 4 we have

Hi
ét(US,Gm,US ) �

⊕
w∈S∞(L)
w real

H i
ét(Spec(Lw),Gm,Spec(Lw)).

Proof This is [28, Chapter II, Proposition 2.1]. ��
Lemma 7.2 Let S and T be as above. Then R�ét(US, ι∗Gm,ZT ) � R�ét(ZT ,Gm,ZT ). More-
over, H0

ét(ZT ,Gm,ZT ) � (OL,S/M
T
L )

× and Hi
ét(ZT ,Gm,ZT ) = 0 for i ≥ 1.

Proof For a finite field F, the cohomology of R�ét(Spec(F),Gm,Spec(F)) vanishes outside
degree 0 and H0

ét(Spec(F),Gm,Spec(F)) � F
×. Moreover, we have an isomorphism

R�ét(ZT ,Gm,ZT ) �
⊕

w∈T (L)
R�ét(Spec(L(w)),Gm,Spec(L(w))),

where L(w) denotes the finite field OL/Pw , and so the second claim follows. Note that the
natural map H0

ét(ZT ,Gm,ZT ) → H0
ét(US, ι∗Gm,ZT ) is in fact an isomorphism. Furthermore,

the functor ι∗ is exact for the étale topology by [27, Chapter II, Corollary 3.6]. Thus the
universal property of derived functors gives the first claim. ��

Let 
 be a subset of S containing S∞. We shall consider the natural map

ψT

,S = ψT


,S(L) : R�ét(U
,G
T
m,U


) −→ R�ét(US,G
T
m,US

). (7.2)

Here, the set T may be empty, in which case we put G
∅
m,US

:= Gm,US and similarly with
Gm,U
 . Sequence (7.1) and Lemma 7.2 for S and 
 induce a commutative diagram

R�ét(U
,G
T
m,U


) ��

ψT

,S

��

R�ét(U
,Gm,U
 )
��

ψ
,S

��

R�ét(ZT ,Gm,ZT )

R�ét(US,G
T
m,US

) �� R�ét(US,Gm,US )
�� R�ét(ZT ,Gm,ZT )

(7.3)
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where the rows are exact triangles. Let DT

,S = DT


,S(L) be the cone of ψ
T

,S . The diagram

shows that DT

,S does not in fact depend on T and thus we denote it by D
,S .

Proposition 7.3 Let S, T and 
 be as above. We have

Hi (DT

,S(L)) � Hi (D
,S(L)) �

⎧⎨
⎩

Z[S(L)−
(L)] if i = 0
Q/Z[S(L)−
(L)] if i = 2
0 if i �= 0, 2.

Proof As DT

,S = D
,S does not depend on T , we can and do assume that T is empty.

Let Z
,S := U
 − US ; then Z
,S is a closed subscheme of U
 and by [27, Chapter III,
Proposition 1.25] we have an isomorphism

D
,S � R�Z
,S (U
,Gm,U
 )[−1],
where the righthand side denotes cohomology with support on Z
,S . We now apply [27,
Chapter III, Corollary 1.28] and [28, Chapter II, Proposition 1.5] to obtain the desired result.

��
Proposition 7.4 Let S and T be as above. Then

Hi
ét(US,G

T
m,US

) �
⎧⎨
⎩

ET
L,S if i = 0

clTL,S if i = 1
Hi
ét(US,Gm,US ) if i ≥ 2.

Proof By Proposition 7.1 and Lemma 7.2, the long exact sequence of cohomology groups
induced by (7.1) yields an exact sequence

0 −→ H0
ét(US,G

T
m,US

) −→ EL,S −→ (OL,S/M
T
L )

× −→ H1
ét(US,G

T
m,US

) −→ clL,S −→ 0

and isomorphisms Hi
ét(US,G

T
m,US

) � Hi
ét(US,Gm,US ) for all i ≥ 2. It follows from this

and (3.2) that H0
ét(US,G

T
m,US

) � ET
L,S , and that H1

ét(US,G
T
m,US

) and clTL,S have the same
cardinality; it remains to show that they are in fact isomorphic.

We now change notation as follows: let 
 = S for the choice of S as in the statement of
the proposition; and enlarge S in such a way that S is finite and disjoint from T and that clTL,S
vanishes. The same reasoning as above shows that H1

ét(US,G
T
m,US

) also vanishes. Therefore
the long exact cohomology sequence induced by (7.2) yields an exact sequence

0 −→ ET
L,
 −→ ET

L,S −→ Z[S(L)−
(L)] −→ H1
ét(U
,G

T
m,U


) −→ 0, (7.4)

where H0(DT

,S(L)) � Z[S(L)−
(L)] by Proposition 7.3. Comparing (7.4) to (3.1) yields

H1
ét(U
,G

T
m,U


) � clTL,
 , as desired. ��
Remark 7.5 The proof of Proposition 7.4 shows that the long exact sequence in cohomology
induced by (7.2) yields an exact sequence whose first terms coincide with (3.1). Similarly,
taking global sections in (7.1) gives a long exact sequence in cohomology whose first terms
coincide with (3.2).

7.2 Flat cohomology

Let X be an affine scheme and consider themultiplicative group schemeGm/X over X . We let
μn/X be the kernel ofmultiplication by n ∈ N and for a prime pweputμp∞/X := lim−→ j

μp j /X

which is an ind-X -group scheme.
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By the flat site on X we shall mean the site of all quasi-finite flat schemes of finite
presentation over X with the f pp f -topology; so coverings are surjective families of flat
morphisms that are locally of finite presentation. Note that our definition agrees with the
f pq f -site in [42], but differs from the flat site in [27]; however, this will play no decisive
role in the following by [27, Chapter III, Proposition 3.1]. The group schemesGm/X andμn/X

represent abelian sheaves for the flat site on X and we denote the corresponding cohomology
groups by Hi

fl(X ,Gm) and Hi
fl(X , μn), respectively. As Gm is smooth over X , we have an

isomorphism
R�fl(X ,Gm) � R�ét(X ,Gm,X ) (7.5)

by [27, Chapter III, Theorem 3.9].
For a prime p we write μp(L) for the group of p-power roots of unity in L . We now

specialise to the case X = UL := US∞ and p odd. Then μp∞/UL also represents a sheaf for
the flat site on UL . As the Kummer sequences

0 −→ μpn −→ Gm
pn−→ Gm −→ 0

are exact for the flat site on UL for all n ∈ N, we have an exact triangle

R�fl(UL , μp∞) −→ R�fl(UL ,Gm)(p) −→ Qp ⊗L

Zp
R�fl(UL ,Gm)(p), (7.6)

wherewe use the notationC•(p) := Zp⊗L

Z
C• ∈ D(Zp[G]) for any complexC• inD(Z[G]).

By Proposition 7.1 and (7.5) we thus obtain isomorphisms

Hi
fl(UL , μp∞) �

⎧⎨
⎩
μp(L) if i = 0
Qp/Zp if i = 3
0 if i �= 0, 1, 3

and an exact sequence

0 −→ O×
L ⊗Z Qp/Zp −→ H1

fl (UL , μp∞) −→ clL ⊗Z Zp −→ 0.

7.3 A reduction step

We now begin the proof of the main theorem of this article.

Proof of Theorem 5.2 This proof will occupy the rest of Sect. 7 and all of Sect. 8. We first
prove a reduction step that will allow us to make certain simplifying assumptions.

Put L ′ := L(ζp) andC := Gal(L ′/L). ThenC is a cyclic groupwhose order divides p−1.
Let N : AT

L ′ → AT
L and i : AT

L → AT
L ′ denote the homomorphisms induced by the norm and

inclusion maps on ideals, respectively. Then N ◦ i : AT
L → AT

L is multiplication by |C | and
thus is an isomorphism of p-groups. In particular, i is injective and N is surjective. Let�(C)
denote the kernel of the augmentation map Z[C] � Z which maps each c ∈ C to 1. The
composite map i ◦N : AT

L ′ → AT
L ′ (also referred to as a normmap) is given bymultiplication

by
∑

c∈C c. Since the orders ofC and AT
L ′ are coprime, AT

L ′ is cohomologically trivial as aC-
module and thus ker(i ◦ N ) = �(C)AT

L ′ . As i is injective we thus have ker(N ) = �(C)AT
L ′

and since N is surjective we conclude that it induces an isomorphism (AT
L ′)C � AT

L . Using
standard properties of Pontryagin duals and (co)-invariants, we conclude that

(
(AT

L ′)∨
)
C

� ((AT
L ′)C )∨ � ((AT

L ′)C )
∨ � (AT

L )
∨.
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The idempotent eC := |C |−1 ∑
c∈C c belongs to the group ring Zp[Gal(L ′/K )] and so

Fittmax
Zp[G]−

(
(AT

L )
∨)

= eCFitt
max
Zp[Gal(L ′/K )]−

(
(AT

L ′)∨
)

by Lemma 2.6 (iii). As Stickelberger elements also behave well under base change, i.e.,
eCθTp,S(L

′/K ) = θTp,S(L/K ), we may assume without loss of generality that ζp ∈ L . Note

that as we are considering the p-parts we only need that ET
L,S(p) is torsionfree, as opposed

to the stronger requirement that ET
L,S is torsionfree. Since Sp ⊆ S and Hyp(S, T ) holds, this

hypothesis is unaffected by replacing L with L(ζp).
For clarity, we now list the assumptions thatwe shall use for the rest of this proof (including

the lemmas and propositions proved along the way). We can make these assumptions either
for the reasons just explained or because they are direct consequences of our hypotheses.
Note that Sram(L/K ) ∪ Sp = Sram(L∞/K ).

Assumptions We henceforth assume that S, T are finite sets of places of K and that (i)
ζp ∈ L , (ii) S∩T = ∅ �= T , (iii) Sp ∪ Sram(L/K )∪ S∞ ⊆ S, and (iv) ET

L,S(p) is torsionfree.

7.4 Complexes at the finite level

Now taking p-minus parts of sequence (3.2) for S = S∞ yields an exact sequence ofZp[G]−-
modules

0 −→ μp(L) −→
(
OL/M

T
L

)×
(p)− −→ AT

L −→ AL −→ 0. (7.7)

The middle arrow (OL/M
T
L )

×(p)− → AT
L defines a complex CT •(L/K ) in D(Zp[G]−),

where we place the first module in degree 0. For complexes C• inD(Zp[G]) we put C•− :=
Zp[G]− ⊗L

Zp[G] C• ∈ D(Zp[G]−). Note that taking p-minus parts is an exact functor as p
is odd.

Proposition 7.6 There are isomorphisms

CT •(L/K ) � R�ét(UL ,Gm,UL )(p)
− � R�fl(UL , μp∞)−

in D(Zp[G]−). In particular, the isomorphism class of CT •(L/K ) does not depend on T .

Proof Proposition 7.1 describes the cohomology of R�ét(UL ,Gm,UL )(p)
− as follows. First,

we have isomorphisms

H0
ét(UL ,Gm,UL )(p)

− � μp(L), H1
ét(UL ,Gm,UL )(p)

− � AL .

As L is totally complex, we have Hi
ét(UL ,Gm,UL ) = 0 for every i ≥ 4. Finally, we have an

exact sequence

0 −→ H2
ét(UL ,Gm,UL ) −→

⊕
w∈S∞(L)

Br(Lw) −→ Q/Z −→ H3
ét(UL ,Gm,UL ) −→ 0.

However, the Brauer groups Br(Lw) = Br(C) vanish for all archimedean places w of L
and (Q/Z)− = 0. We therefore have Hi

ét(UL ,Gm,UL )(p)
− = 0 for every i ≥ 2. Using

Proposition 7.4 and the assumption that ET
L,S(p) is torsionfree, we likewise find that

Hi
ét(UL ,G

T
m,UL

)(p)− �
{
AT
L if i = 1

0 if i �= 1.
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Now sequence (7.1) and Lemma 7.2 together give an exact triangle

R�ét(UL ,G
T
m,UL

)(p)− ��

�
��

R�ét(UL ,Gm,UL )(p)
− �� R�ét(UL , ι∗Gm,ZT )(p)

−

�
��

AT
L [−1] (OL/M

T
L )

×(p)−

and thus we obtain the first required isomorphism in D(Zp[G]−).
Equation (7.5) with X = UL shows that R�ét(UL ,Gm,UL ) � R�fl(UL ,Gm) inD(Z[G]).

Moreover, the exact triangle (7.6) and the above considerations show that the natural map

R�fl(UL , μp∞)(p)− −→ R�fl(UL ,Gm)(p)
−

is in fact an isomorphism in D(Zp[G]−). Therefore we obtain the second required isomor-
phism in D(Zp[G]−). ��

8 Proof of Theorem 5.2: working at the infinite level

8.1 Setup and notation

We now work at the ‘infinite level’ and use the techniques of Iwasawa theory. Let G :=
Gal(L∞/K ), which we may write as G = H � � where � � Zp and H := Gal(L∞/K∞)

naturally identifies with a normal subgroup of G. Let �0 be an open subgroup of � that
is central in G and recall from (4.1) that �(G) := Zp�G� is a free R := Zp��0�-order
in Q(G). Let j ∈ G denote complex conjugation (this an abuse of notation because its
image in the quotient group G := Gal(L/K ) is also denoted by j) and let G+ := G/〈 j〉 =
Gal(L+∞/K ). Then j ∈ H and so again �(G+) is a free R-order in Q(G+). Moreover,
�(G)− := �(G)/(1+ j) is also a free R-module of finite rank. For any�(G)-module M we
write M+ and M− for the submodules of M upon which j acts as 1 and−1, respectively, and
consider these as modules over�(G+) and�(G)−, respectively. We note that M is R-torsion
if and only if both M+ and M− are R-torsion. Furthermore, any R-module that is finitely
generated as a Zp-module is necessarily R-torsion.

Let χcyc : G → Z
×
p denote the p-adic cyclotomic character (recall the assumption that

ζp ∈ L). Let μpn = μpn (L∞) denote the group of pn th roots of unity in L×∞ and let μp∞
be the nested union (or direct limit) of these groups. Let Zp(1) := lim←−n

μpn be endowed

with the action of G given by χcyc. For any r ≥ 0 define Zp(r) := Zp(1)⊗r and Zp(−r) :=
HomZp (Zp(r),Zp) endowed with the naturally associated actions. For any �(G)-module
M , we define the r th Tate twist to be M(r) := Zp(r) ⊗Zp M with the natural G-action;
hence M(r) is simply M with the modified G-action g · m = χcyc(g)r g(m) for g ∈ G and
m ∈ M . In particular, we have Qp/Zp(1) � μp∞ and �(G+)(−1) � �(G)−. Recall that
for a Z-module M we previously defined M(p) := Zp ⊗Z M ; we shall use both notations
M(p) and M(r) in the sequel, believing the meaning to be clear from context. We note that
the property of being R-torsion is preserved under taking Tate twists.

For every place v of K we denote the decomposition subgroup of G at a chosen prime
w∞ above v by Gw∞ (everything will only depend on v and not onw∞ in the following). We
note that the index [G : Gw∞] is finite when v is a finite place of K .
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8.2 Complexes at the infinite level

Let Ln be the nth layer in the cyclotomic Zp-extension of L . Then lim−→n
CT •(Ln/K ) defines

a complex CT •(L∞/K ) in D(�(G)−). We define AL∞ := lim−→n
ALn .

Lemma 8.1 We have isomorphisms

Hi (CT •(L∞/K )) �
⎧⎨
⎩
μp∞ � Qp/Zp(1) if i = 0
AL∞ if i = 1
0 if i �= 0, 1.

Proof Recall that CT •(Ln/K ) is defined by the middle arrow of the sequence (7.7) for the
layer Ln . Taking the direct limit over all n gives an exact sequence of �(G)−-modules

0 −→ μp∞ −→
(⊕
v∈T

indGGw∞μp∞

)−
−→ AT

L∞ −→ AL∞ −→ 0, (8.1)

where AT
L∞ := lim−→n

AT
Ln
. Thus CT •(L∞/K ) is the complex in degrees 0 and 1 given by the

middle arrow of (8.1), giving the desired result. ��
For every complex C• in D(�(G)) we put C•− := �(G)− ⊗L

�(G) C
• ∈ D(�(G)−). For a

finite set S of places of K we let U∞,S := Spec(OL∞,S∪S∞) and put UL∞ := U∞,S∞ . The
following proposition can be viewed as a ‘derived version’ of results that are well-known at
the level of cohomology. It seems possible that this result is known to experts, but the authors
were unable to locate a proof in the literature.

Proposition 8.2 There are isomorphisms

CT •(L∞/K ) � R�fl(UL∞ , μp∞)− � R�ét(U∞,Sp , μp∞)−

in D(�(G)−). In particular, the isomorphism class of CT •(L∞/K ) does not depend on T .

Proof The assumption that ζp ∈ L is crucial in this proof. Even though it is not strictly
necessary, we first check that the two complexes CT •(L∞/K ) and R�ét(U∞,Sp , μp∞)−
compute the same cohomology. Let MSp be the maximal profinite extension of L∞ that is
unramified outside Sp and let Mab

Sp
(p) be the maximal abelian pro-p-extension of L∞ inside

MSp . We put HSp := Gal(MSp/L∞) and XSp := Gal(Mab
Sp
(p)/L∞). There is a canonical

isomorphism with Galois cohomology

R�ét(UL∞,Sp , μp∞) � R�(HSp , μp∞). (8.2)

The strict cohomological p-dimension of HSp equals 2 by [37, Corollary 10.3.26] and thus
Hi (HSp , μp∞) = 0 for all i �= 0, 1, 2. As the weak Leopoldt conjecture holds for the
cyclotomic Zp-extension, we also have H2(HSp , μp∞) = H2(HSp ,Qp/Zp)(1) = 0 by [37,
Theorem 11.3.2]. We clearly have H0(HSp , μp∞) = μp∞ . Finally

H1(HSp , μp∞)− = Hom(HSp , μp∞)− = Hom(XSp , μp∞)− = Hom(X+
Sp
, μp∞) � AL∞ ,

where the last isomorphism is Kummer duality [37, Theorem 11.4.3]. If we compare this
with Lemma 8.1, we see that R�ét(U∞,Sp , μp∞)− and CT •(L∞/K ) compute the same
cohomology.
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We now establish the derived version of this result and also consider flat cohomology. By
Proposition 7.6 we have isomorphisms

CT •(Ln/K ) � R�fl(ULn , μp∞)−

for each layer Ln in the cyclotomic Zp-extension. Taking direct limits over all n yields the
first required isomorphism by [27, Chapter III, Lemma 1.16] which holds for the flat topology
as well (see [27, Chapter III, Remark 1.17 (d)] and [19, p. 172]). Finally, the natural map

R�fl(UL∞ , μp∞) −→ R�ét(U∞,Sp , μp∞)

is an isomorphism by [42, Part II, Lemma 3] (note that this result is formulated only in terms
of cohomology, but the proof actually shows that the cone of this map is acyclic). ��

For a finite set S of places of K containing Sp ∪ S∞ recall the definition of the complex

C•
S(L

+∞/K ) := R�ét(Spec(OL+∞,S),Qp/Zp)
∨ ∈ D(�(Gal(L+∞/K )))

which occurs in the EIMC. For an integerm we letC•
S(L

+∞/K )(m) := Zp(m)⊗L

Z
C•
S(L

+∞/K )
be the m-fold Tate twist.

Corollary 8.3 We have C•
Sp
(L+∞/K )(−1) � CT •(L∞/K )∨ in D(�(G)−).

Lemma 8.4 Let T ′ be a non-empty finite set of places of K disjoint from Sp ∪ Sram ∪ S∞
and let IT ′ :=

(⊕
v∈T ′ indGGw∞ Zp(−1)

)−
. Then

(i) IT ′ is an �(G)−-module of projective dimension at most 1,
(ii) for any �(G)−-module M we have Exti�(G)−(IT ′ ,M) = 0 for i ≥ 2, and
(iii) IT ′ is R-torsion.

Proof For each v ∈ T ′ we have an exact sequence of �(Gw∞)-modules

0 −→ �(Gw∞) −→ �(Gw∞) −→ Zp(−1) −→ 0, (8.3)

where the injection is right multiplication by 1−χcyc(φw∞)φw∞ and φw∞ denotes the Frobe-
nius automorphism atw∞. Claim (i) now follows easily, and this implies claim (ii). For each
v ∈ T ′ the index [G : Gw∞] is finite; thus IT ′ is finitely generated as a Zp-module, giving
claim (iii). ��
Proposition 8.5 There exists a �(G)−-module Y T

S (−1) and a commutative diagram

0 �� X+
S (−1) ��

��

Y T
S (−1) ��

��

IT �� Zp(−1) �� 0

0 �� X+
Sp
(−1) ��

��

Hom(AT
L∞ ,Qp/Zp) ��

��

IT �� Zp(−1) �� 0,

0 0
(8.4)

with exact rows and columns where the middle two terms of upper and lower rows (concen-
trated in degrees −1 and 0) represent C•

S(L
+∞/K )(−1) and C•

Sp
(L+∞/K )(−1), respectively.
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Proof Using (8.1) and Corollary 8.3 we see that for every finite set T of places of K such that
Hyp(Sp ∪ Sram ∪ S∞, T ) is satisfied, the extension class of the complex C•

Sp
(L+∞/K )(−1)

in Ext2�(G)−(Zp(−1), X+
Sp
(−1)) may be represented by the exact sequence

0 −→ X+
Sp
(−1) −→ Hom(AT

L∞ ,Qp/Zp) −→ IT −→ Zp(−1) −→ 0. (8.5)

Let ZS be the kernel of the natural surjection X+
S (−1) � X+

Sp
(−1) and let WT be the

kernel of the right-most surjection in (8.5). Then the short exact sequences

0 −→ WT −→ IT −→ Zp(−1) −→ 0, 0 −→ ZS −→ X+
S (−1) −→ X+

Sp
(−1) −→ 0,

induce long exact sequences in cohomology, which by Lemma 8.4 (ii) give the following
diagram

Ext1(WT , ZS) ��

��

Ext2(Zp(−1), ZS) ��

��

0

Ext1(WT , X
+
S (−1))

αS ��

γ

��

Ext2(Zp(−1), X+
S (−1)) ��

β

��

0

Ext1(WT , X
+
Sp
(−1))

αp ��

��

Ext2(Zp(−1), X+
Sp
(−1)) ��

��

0

Ext2(WT , ZS)
∼ �� Ext3(Zp(−1), ZS),

where we have omitted the subscript �(G)− from all Ext-groups, and all rows and columns
are exact. Note that the top two squares are commutative (see [21, (7.3), p. 140]) and that
the bottom square is anti-commutative (see [21, Exercise 9.9, p. 156]). By [2, Lemma 2.4] β
maps (the class of) C•

S(L
+∞/K )(−1) to C•

Sp
(L+∞/K )(−1). Let

ε := [0 −→ X+
Sp
(−1) −→ Hom(AT

L∞ ,Qp/Zp) −→ WT −→ 0] ∈ Ext1�(G)−(WT , X
+
Sp
(−1)).

Then the fact that C•
Sp
(L+∞/K )(−1) is represented by (8.5) shows that αp maps ε to

C•
Sp
(L+∞/K )(−1). Now a diagram chase shows that there exists a preimage of ε under

γ that is mapped to C•
S(L

+∞/K )(−1) by αS . ��
The proof of the following lemma explains why we write Y T

S (−1) rather than Y T
S . Note

that every�(G)−-module M may be written as an n-fold Tate twist for every n ∈ Z; simply
write M = M(−n)(n).

Lemma 8.6 The projective dimension of the�(G)−-module Y T
S (−1) is at most 1. Moreover,

Y T
S (−1) is R-torsion.

Proof Let T ⊆ T ′′ be a second finite set of places of K such that Hyp(S, T ′′) is satisfied and
let T ′ := T ′′ − T . The short exact sequence

0 −→ WT −→ WT ′′ −→ IT ′ −→ 0

induces a long exact sequence in cohomology which by Lemma 8.4 (ii) becomes

Ext1�(G)−(WT ′′ , X+
S (−1)) −→ Ext1�(G)−(WT , X

+
S (−1)) −→ 0.
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Thus using top row of (8.4) for T and T ′′ we have a commutative diagram

0 �� X+
S (−1) �� Y T

S (−1) ��

��

IT ��

��

Zp(−1) �� 0

0 �� X+
S (−1) �� Y T ′′

S (−1) �� IT ′′ �� Zp(−1) �� 0.

Applying the snake lemma now gives a short exact sequence

0 −→ Y T
S (−1) −→ Y T ′′

S (−1) −→ IT ′ −→ 0.

Therefore Lemma 8.4 shows that the claim does not depend on the particular choice of T
and so by Remark 3.1 we can and do assume that T consists of a single place v.

Recall that G+ := G/〈 j〉 = Gal(L+∞/K ) and let G+
w+∞

denote the decomposition subgroup

at w+∞, where w+∞ denotes the place of L+∞ below w∞. Then we have an isomorphism of
�(G+)-modules

(indGGw∞ Zp(−1))−(1) � indG
+

G+
w

+∞
Zp. (8.6)

Let �(G+) denote the kernel of the augmentation map �(G+) � Zp . Given a �(G+)-
monomorphism ψ : �(G+) → �(G+), Ritter and Weiss [39, Sect. 4] construct a four term
exact sequence whose class in Ext2

�(G+)(Zp, X
+
S ) is in fact independent of the choice of ψ .

To make this construction explicit, we now chooseψ to be given by right multiplication with
(1 − φw+∞), where φw+∞ denotes the Frobenius automorphism at w+∞. Let ψ̃ be ψ followed

by the inclusion �(G+) ⊂ �(G+). Then the cokernel of ψ̃ identifies with indG
+

G+
w

+∞
Zp , and

the Ritter and Weiss construction gives a four term exact sequence

0 −→ X+
S −→ Ỹ {v}

S −→ indG
+

G+
w

+∞
Zp −→ Zp −→ 0,

where the �(G+)-module Ỹ {v}
S has projective dimension at most 1 and is R-torsion.

It follows from [33, Theorem 2.4], Corollary 8.3 and (8.6) that we have a commutative
diagram

0 �� X+
S

�� Y {v}
S

��

��

indG
+

G+
w

+∞
Zp �� Zp �� 0

0 �� X+
S

�� Ỹ {v}
S

�� indG
+

G+
w

+∞
Zp �� Zp �� 0.

Hence the vertical arrow must be an isomorphism, and thus the projective dimension of the
�(G+)-module Y {v}

S is at most 1 and Y {v}
S is R-torsion. Therefore the same claims are true

of the �(G)−-module Y {v}
S (−1). ��

8.3 Consequences in terms of non-commutative Fitting invariants

We will henceforth assume that all ramified places belong to S. For v ∈ T we put

ξv := nr(1 − χcyc(φw∞)φw∞).
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We put

�S,T = �S,T (L∞/K ) := t1cyc(�S) ·
∏
v∈T

ξv.

Note that this slightly differs from the corresponding element �S,T in [33].

Proposition 8.7 Suppose that the EIMC holds for L+∞/K. Then �S,T is a generator of
Fitt�(G)−(Y T

S (−1)).

Proof Since the EIMC holds, by definition (2.6) we have that �−1
S generates the

Fitting invariant of C•
S(L

+∞/K ) ∈ Dperf
tor (�(G+)). However, t1cyc induces an isomor-

phism �(G+)(−1) � �(G)− and so t1cyc(�S)
−1 generates the Fitting invariant of

C•
S(L

+∞/K )(−1) ∈ Dperf
tor (�(G)−). Lemmas 8.4 and 8.6 show that IT and Y T

S (−1) are
both R-torsion �(G)−-modules of projective dimension at most 1; hence they both have
quadratic presentations by Remark 4.1 (or alternatively, [29, Lemma 6.2]). Therefore com-
bining Proposition 8.5 and Lemma 2.7 gives

Fitt�(G)−(Y
T
S (−1)) = Fitt�(G)−

(
C•
S(L

+∞/K )(−1)
)−1 · Fitt�(G)−(IT ).

The exact sequence (8.3) shows that each (indGGw∞ Zp(−1))− has a quadratic presentation
and that its Fitting invariant is generated by ξv . Hence Lemma 2.6 (ii) gives

Fitt�(G)−(IT ) =
∏
v∈T

Fitt�(G)−
(
(indGGw∞ Zp(−1))−

)
=

∏
v∈T

[〈ξv〉ζ(�(G)−)]nr(ζ(�(G)−) ,
and we therefore obtain the desired result. ��

We now suppose that the EIMC holds for L+∞/K . The surjection

Y T
S (−1) −→ Hom(AT

L∞ ,Qp/Zp) −→ 0

in diagram (8.4), together with Lemma 2.6 (i) and Proposition 8.7 then imply that

�S,T ∈ Fittmax
�(G)−(Hom(A

T
L∞ ,Qp/Zp)).

As the transition maps in the direct limit AT
L∞ = lim−→n

AT
Ln

are injective by [17, Lemma 2.9],

the transition maps in the projective limit Hom(AT
L∞ ,Qp/Zp) = lim←−n

(AT
Ln
)∨ are surjective.

As �L := Gal(L∞/L) clearly acts trivially on (AT
L )

∨, we have a surjection

Hom(AT
L∞ ,Qp/Zp)�L −→ (AT

L )
∨ −→ 0. (8.7)

Fix an odd character χ ∈ IrrQc
p
(G) and view χ as an irreducible character of G with open

kernel. We have

φ( jχ (t
1
cyc(�S))) = φ( j1χω(�S)) = L p,S(0, χω),

where the first and second equalities follow from Lemma 6.1 and (6.4), respectively. More-
over, φ( jχ (

∏
v∈T ξv)) = δT (0, χ̌). As Fitting invariants behave well under base change by

Proposition 6.2, we have

(θTp,S)
� =

∑
χ∈Irr

Q
c
p
(G)

φ( jχ (�S,T ))e(χ) ∈ Fittmax
Zp[G]−(Hom(A

T
L∞ ,Qp/Zp)�L )

⊆ Fittmax
Zp[G]−((A

T
L )

∨),

where we have again used Lemma 2.6 (i). This completes the proof of Theorem 5.2. ��
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9 Hybrid p-adic group rings and Frobenius groups

9.1 Hybrid p-adic group rings

We recall material on hybrid p-adic group rings from [24, Sect. 2] and [25, Sect. 2]. We shall
sometimes abuse notation by using the symbol ⊕ to denote the direct product of rings or
orders.

Let p be a prime and let G be a finite group. For a normal subgroup N � G, let eN =
|N |−1 ∑

σ∈N σ be the associated central trace idempotent in the group algebra Qp[G]. Then
there is a ring isomorphismZp[G]eN � Zp[G/N ]. We now specialise [24, Definition 2.5] to
the case of p-adic group rings (we shall not need the more general case of N -hybrid orders).

Definition 9.1 Let N � G. We say that the p-adic group ring Zp[G] is N-hybrid if (i)
eN ∈ Zp[G] (i.e. p � |N |) and (ii) Zp[G](1− eN ) is a maximal Zp-order in Qp[G](1− eN ).

9.2 Frobenius groups

We recall the definition and some basic facts about Frobenius groups and then use them to
provide many examples of hybrid group rings. For further results and examples, we refer the
reader to [24, Sect. 2.3] and [25, Sect. 2.2].

Definition 9.2 A Frobenius group is a finite group G with a proper non-trivial subgroup H
such that H ∩ gHg−1 = {1} for all g ∈ G − H , in which case H is called a Frobenius
complement.

Theorem 9.3 A Frobenius group G contains a unique normal subgroup N, known as the
Frobenius kernel, such that G is a semidirect product N � H. Moreover:

(i) |N | and [G : N ] = |H | are relatively prime.
(ii) The Frobenius kernel N is nilpotent.
(iii) If K � G then either K � N or N � K.
(iv) If χ ∈ IrrC(G) such that N � ker χ then χ = indGN (ψ) for some 1 �= ψ ∈ IrrC(N ).

Proof For (i) and (iv) see [9, Sect. 14A]. For (ii) see [38, 10.5.6] and for (iii) see [38, Exercise
7, Sect. 8.5]. ��
Proposition 9.4 ([24, Proposition 2.13]) Let G be a Frobenius group with Frobenius kernel
N . Then for every prime p not dividing |N |, the group ring Zp[G] is N-hybrid.

For n ∈ N, let Cn denote the cyclic group of order n, let An denote the alternating group
on n letters and let Sn denote the symmetric group on n letters. Let V4 denote the subgroup
of A4 generated by double transpositions. We now recall two examples from [24, Sect. 2.3]
(also see [25, Sect. 2.2]).

Example 9.5 Let p < q be distinct primes and assume that p | (q − 1). Then there is an
embedding Cp ↪→ Aut(Cq) and so there is a fixed-point-free action of Cp on Cq . Hence
the corresponding semidirect product G = Cq �Cp is a Frobenius group (see [24, Theorem
2.12] or [41, Sect. 4.6], for example), and so Zp[G] is N -hybrid with N = Cq .

Example 9.6 Let q be a prime power and let Fq be the finite field with q elements. The group
Aff(q) of affine transformations onFq is the group of transformations of the form x �→ ax+b
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with a ∈ F
×
q and b ∈ Fq . Let G = Aff(q) and let N = {x �→ x + b | b ∈ Fq}. Then G is a

Frobenius group with Frobenius kernel N � Fq and is isomorphic to the semidirect product
Fq �F

×
q with the natural action. Hence for every prime p not dividing q , we have that Zp[G]

is N -hybrid. Note that in particular Aff(3) � S3 and Aff(4) � A4.

Lemma 9.7 Let G = N � H be a Frobenius group. Then G is monomial if and only if its
Frobenius complement H is monomial. In particular, if H is supersoluble or metabelian then
G is monomial.

Proof Suppose H is monomial. Let χ ∈ IrrC(G). If N ≤ ker χ then χ is inflated from
some ϕ ∈ IrrC(G/N ). Otherwise N � ker χ and so χ is induced from some ψ ∈ IrrC(N )
by Theorem 9.3 (iv). The Frobenius complement H � G/N is monomial by assumption.
Moreover, the Frobenius kernel N is nilpotent by Theorem 9.3 (ii) and thus is monomial by
[9, Theorem 11.3]. However, induction is transitive and inflation commutes with induction
(as in [48, Theorem 4.2 (3)], for example) so that in both cases χ is induced from a linear
character. Therefore G is monomial. The converse follows from the fact that any quotient
of a monomial group is monomial (this can easily be proved using that inflation commutes
with induction; also see [3, Chapter 2, Sect. 4]). The last claim follows since H is monomial
in these cases by [48, Sect. 4.4, Theorem 4.8 (1)]). ��

9.3 New p-adic hybrid group rings from old

We recall two results from [25, Sect. 2].

Proposition 9.8 ([25, Proposition 2.14]) Let G be a finite group with normal subgroups
N , H �G. Let N ′ be a normal subgroup of H such that N ′ ≤ N. Let p be a prime. If Zp[G]
is N-hybrid then Zp[H ] is N ′-hybrid.

Proposition 9.9 ([25, Proposition 2.15]) Let G be a finite group with normal subgroups
N � H � G such that N � G. Let p be a prime and assume that p � [G : H ]. Then Zp[G]
is N-hybrid if and only if Zp[H ] is N-hybrid.

Example 9.10 Let p = 3,G = S4, H = A4 and N = V4. Then the hypotheses of Proposition
9.9 are satisfied. HenceZ3[S4] is V4-hybrid if and only ifZ3[A4] is V4-hybrid. In fact,Z3[A4]
is indeed V4-hybrid since A4 is a Frobenius group with Frobenius kernel V4 (see Example
9.6) and soZ3[S4] is also V4-hybrid. However, S4 is not a Frobenius group (see [24, Example
2.18]). Thus Proposition 9.9 can be used to give examples which do not come directly from
Proposition 9.4.

Remark 9.11 One of the main reasons for interest in Propositions 9.8 and 9.9 comes from
base change in Galois theory. Assume that L/K is a finite Galois extension with Galois group
G. Let p be a prime and suppose that Zp[G] is N -hybrid for some normal subgroup N of
G. Put F := LN . Now let K ′/K be a finite abelian extension of K and put F ′ = FK ′ and
L ′ = LK ′. Then H := Gal(L ′/K ′) naturally identifies with a subgroup of G. Similarly,
N ′ := Gal(L ′/F ′) is normal in H and identifies with a subgroup of N . The fixed field LH

is a subfield of K ′ and thus LH/K is a Galois extension, since K ′/K is abelian. Hence H
is normal in G and we conclude by Proposition 9.8 that Zp[H ] is N ′-hybrid. Finally, let
G ′ := Gal(L ′/K ); if p � [K ′ : K ] then Zp[G ′] is also N ′-hybrid by Proposition 9.9. The
situation is illustrated by the following field diagram.
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L ′

���
���

��

N ′

H

G ′
L

N

G

F ′

���
���

��

F

K ′

���
���

��

K

10 Unconditional results

10.1 Extensions of degree coprime to p

We first consider a straightforward case.

Theorem 10.1 Let L/K be a finite Galois CM-extension of number fields. Let p be an odd
prime and let S be a finite set of places of K such that Sp ∪ Sram(L/K ) ∪ S∞ ⊆ S. If
Gal(L+/K ) is monomial and p � [L+ : K ] then both BS(L/K , S, p) and B(L/K , S, p)
are true.

Proof Since [L+ : K ] and [L(ζp)+ : L+] are both coprime to p, their product [L(ζp)+ : K ]
is also coprime to p. Hence by Theorem 4.6 the EIMC holds for L(ζp)+∞/K , and so the
desired result follows from Corollary 5.4. ��

10.2 Further unconditional cases of the EIMC

We now apply the results of [25] to give criteria for the EIMC to hold unconditionally in
cases of interest to us.

Theorem 10.2 Let L/K be a finite Galois extension of totally real number fields with Galois
group G. Let p be an odd prime and let L∞ be the cyclotomic Zp-extension of L. Let N be
a normal subgroup of G and let P be a Sylow p-subgroup of G := Gal(LN/K ) � G/N.
Suppose thatZp[G] is N-hybrid and that (LN )P/Q is abelian. Let K ′/K be a field extension
such that K ′ is totally real, K ′/Q is abelian and p � [K ′ : K ] < ∞. Let L ′∞ = L∞K ′. Then
the EIMC holds for both L∞/K and L ′∞/K.

Remark 10.3 It is straightforward to see that for every prime p and every finite group G, the
p-adic group ring Zp[G] is {1}-hybrid. Hence, in particular, Theorem 10.2 can be applied in
the case that N is trivial.

Remark 10.4 The hypothesis that (LN )P/Q is abelian forces K/Q to be abelian, and thus
one can take K ′ to be the compositum of K with another finite abelian extension K ′′/Q
such that p � [K ′′ : Q]. In particular, Theorem 10.2 can be applied with K ′ = K (ζp)+ and
L ′∞ = L∞(ζp)

+ = L(ζp)+∞.
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Proof of Theorem 10.2 The EIMC holds for L∞/K by [25, Theorem 4.17 (v)]. Let F = LN

and put F ′ = FK ′ and L ′ = LK ′. LetG ′ = Gal(L ′/K ) and N ′ = Gal(L ′/F ′). ThenZp[G ′]
is N ′-hybrid by Remark 9.11. Let P

′
be a Sylow p-subgroup of G ′ := G ′/N ′. Then

((L ′)N ′
)P

′ = (F ′)P
′ = FPK ′ = (LN )P K ′,

which is an abelian extension of Q as it is the compositum of two such extensions. Therefore
the EIMC holds for L ′∞/K by a further application of [25, Theorem 4.17 (v)]. ��

10.3 Unconditional results on the non-abelian Brumer–Stark conjecture

Theorem 10.5 Let L/K be a finite Galois CM-extension of number fields. Let N be a
normal subgroup of G := Gal(L+/K ) and let F = (L+)N . Let p be an odd prime
and let P be a Sylow p-subgroup of G := Gal(F/K ) � G/N. Suppose that Zp[G] is
N-hybrid, G is monomial, and F P/Q is abelian. Let S be a finite set of places of K such that
Sp ∪ Sram(L/K ) ∪ S∞ ⊆ S. Then both BS(L/K , S, p) and B(L/K , S, p) are true.

Remark 10.6 In particular, Theorem 10.5 can be applied in the case that N is trivial and
F = L+ (see Remark 10.3).

Proof of Theorem 10.5 Applying Theorem 10.2 with K ′ = K (ζp)+ gives the EIMC for
L(ζp)+∞/K . Hence the desired result follows from Corollary 5.4. ��
Corollary 10.7 Let L/K be a finite Galois CM-extension of number fields and let G =
Gal(L+/K ). Suppose that G = U � V is a Frobenius group with Frobenius kernel U and
abelian Frobenius complement V . Further suppose that (L+)U/Q is abelian (in particular,
this is the case when K = Q). Let p be an odd prime and let S be a finite set of places of
K such that Sp ∪ Sram(L/K ) ∪ S∞ ⊆ S. Suppose that either p � |U | or U is a p-group (in
particular, this is the case if U is an !-group for any prime !.) Then both BS(L/K , S, p)
and B(L/K , S, p) are true.

Proof First note that G is monomial by Lemma 9.7 since V is abelian. Suppose that p � |U |.
Let N = U and F = (L+)N . Then Zp[G] is N -hybrid by Proposition 9.4. Hence the desired

result follows from Theorem 10.5 in this case since F/Q is abelian, which forces FP/Q to
be abelian. Suppose that U is a p-group. Taking N = {1} and F = L+ (see Remark 10.6)
we apply Theorem 10.5 with G = G and P = U to obtain the desired result. ��
Example 10.8 In particular, U is an !-group in Corollary 10.7 in the following cases:

• G � Aff(q), where q is a prime power (see Example 9.6),
• G � C! � Cq , where q < ! are distinct primes such that q | (! − 1) and Cq acts on C!

via an embedding Cq ↪→ Aut(C!) (see Example 9.5),
• G is isomorphic to any of the Frobenius groups constructed in [25, Example 2.11].

Corollary 10.9 Let L/K be a finite Galois CM-extension of number fields. Let p be an odd
prime and let S be a finite set of places of K such that Sp ∪ Sram(L/K )∪ S∞ ⊆ S. Then both
BS(L/K , S, p) and B(L/K , S, p) are true when L+/K is any of the extensions considered
in [25, Examples 4.21, 4.22 or 4.23].

Proof The group in [25, Examples 4.21] is monomial by an application of Lemma 9.7 and
the group in [25, Example 4.22] is monomial by an application of [3, Chapter 2, Theorem
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3.10]. For [25, Examples 4.23] it is straightforward to check that S4 is a monomial group.
That the remaining hypotheses of Theorem 10.5 are satisfied in each case are verified in the
cited examples themselves. ��

In certain situations, we can also remove the condition that Sp ⊆ S. To illustrate this, we
conclude with the following result.

Theorem 10.10 Let L/Q be a finite Galois CM-extension of the rationals. Suppose that
Gal(L/Q) � 〈 j〉 × G, where G = Gal(L+/Q) = N � V is a Frobenius group with
Frobenius kernel N and abelian Frobenius complement V . Suppose further that N is an
!-group for some prime !. Then both BS(L/Q, S, p) and B(L/Q, S, p) are true for every
odd prime p and every finite set S of places of Q such that Sram(L/Q) ∪ S∞ ⊆ S.

Proof ByCorollary 10.7, we see that the desired result holds whenwe assume in addition that
S contains Sp = {p}. Hence we may assume that p is unramified in L/Q since Sram(L/Q) ⊆
S.We claim that in this case the p-minus part of the equivariant Tamagawa number conjecture
(ETNC) holds for the pair (h0(Spec(L)),Z[Gal(L/Q)])which implies both BS(L/K , S, p)
and B(L/K , S, p) by [30, Theorem 5.3]. As p is unramified in L/Q, we have L � L+(ζp)
and thus the Strong Stark conjecture at p holds for each odd character of Gal(L/Q) by [31,
Corollary 2]. Moreover, when p = ! then the relevant μ-invariant vanishes by the theorem
of Ferrero and Washington [14] and [37, Theorem 11.3.8]. Hence the minus-p-part of the
ETNC holds by [34, Theorem 1.3]. Now suppose that p �= !. Then the group ring Zp[G]
is N -hybrid by Proposition 9.4 and so Zp[Gal(L/Q)] is also N -hybrid by Proposition 9.9
since p is odd. As LN/Q is abelian, the (minus-p-part of the) ETNC holds for the pair
(h0(Spec(LN )),Z[Gal(LN/Q)]) by work of Burns and Greither [4]. Thus the minus-p-part
of the ETNC for the pair (h0(Spec(L)),Z[Gal(L/Q)]) holds as well by restricting [24,
Theorem 4.3] to minus parts. ��
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