7 research outputs found

    Arbuscular mycorrhizal networks: process and functions. A review

    No full text
    International audienceAn unprecedented, rapid change in environmental conditions is being observed, which invariably overrules the adaptive capacity of land plants. These environmental changes mainly originate from anthropogenic activities, which have aggravated air and soil pollution, acid precipitation, soil degradation, salinity, contamination of natural and agro-ecosystems with heavy metals such as cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), global climate change, etc. The restoration of degraded natural habitats using sustainable, low-input cropping systems with the aim of maximizing yields of crop plants is the need of the hour. Thus, incorporation of the natural roles of beneficial microorganisms in maintaining soil fertility and plant productivity is gaining importance and may be an important approach. Symbiotic association of the majority of crop plants with arbuscular mycorrhizal (AM) fungi plays a central role in many microbiological and ecological processes. In mycorrhizal associations, the fungal partner assists its plant host in phosphorus (P) and nitrogen (N) uptake and also some of the relatively immobile trace elements such as zinc (Zn), copper (Cu) and iron (Fe). AM fungi also benefit plants by increasing water uptake, plant resistance and biocontrol of phytopathogens, adaptation to a variety of environmental stresses such as drought, heat, salinity, heavy metal contamination, production of growth hormones and certain enzymes, and even in the uptake of radioactive elements. The establishment of symbiotic association usually involves mutual recognition and a high degree of coordination at the morphological and physiological level, which requires a continuous cellular and molecular dialogue between both the partners. This has led to the identification of the genes, signal transduction pathways and the chemical structures of components relevant to symbiosis; however, scientific knowledge on the physiology and function of these fungi is still limited. This review unfolds our current knowledge on signals and mechanisms in the development of AM symbiosis; the molecular basis of nutrient exchange between AM fungi and host plants; and the role of AM fungi in water uptake, disease protection, alleviation of various abiotic soil stresses and increasing grain production

    Hard X-Ray/Soft Gamma-Ray Experiments and Missions: Overview and Prospects

    No full text

    A Fermi gamma-ray burst monitor search for electromagnetic signals coincident with gravitational-wave candidates in Advanced LIGO's first observing run

    No full text
    We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source, and in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact binary coalescence searches using the Fermi Gamma-Ray Burst Monitor (GBM), leveraging its all sky and broad energy coverage. Candidates are ranked and compared to background to measure the significance. Those with false alarm rates (FARs) of less than 10−5 Hz (about one per day, yielding a total of 81 candidates) are used as the search sample for gamma-ray follow-up. No GW candidates were found to be coincident with gamma-ray transients independently identified by blind searches of the GBM data. In addition, GW candidate event times were followed up by a separate targeted search of GBM data. Among the resulting GBM events, the two with the lowest FARs were the gamma-ray transient GW150914-GBM presented in Connaughton et al. and a solar flare in chance coincidence with a GW candidate

    B. Sprachwissenschaft

    No full text

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Bibliography

    No full text
    corecore