17 research outputs found

    The Src Homology 2 and Phosphotyrosine Binding Domains of the ShcC Adaptor Protein Function as Inhibitors of Mitogenic Signaling by the Epidermal Growth Factor Receptor

    Get PDF
    Upon ligand activation, the epidermal growth factor receptor (EGFR) becomes tyrosine-phosphorylated, thereby recruiting intracellular signaling proteins such as Shc. EGFR binding of Shc proteins results in their tyrosine phosphorylation and subsequent activation of the Ras and Erk pathways. Shc interaction with activated receptor tyrosine kinases is mediated by two distinct phosphotyrosine interaction domains, an NH2-terminal phosphotyrosine binding (PTB) domain and a COOH-terminal Src homology 2 (SH2) domain. The relative importance of these two domains for EGFR binding was examined by determining if expression of the isolated SH2 or PTB domain of ShcC would inhibit EGFR signaling. The SH2 domain potently inhibited numerous aspects of EGFR signaling including activation of Erk2 and the Elk-1 transcription factor as well as EGFR-dependent transformation. Furthermore, the SH2 domain inhibited focus formation by the Neu oncoprotein, another EGFR family member. Surprisingly, inhibition of the EGFR by the SH2 domain did not involve stable association with the receptor. In contrast, the PTB domain associated quite well with the receptor yet had little effect on EGFR signaling. Although the EGFR cytoplasmic tail contains consensus binding sites for the PTB and SH2 domains of ShcC, and both domains of ShcC interact with the receptor in vitro, the SH2 domain is more potent for inhibiting receptor function in vivo. However, inhibition is not due to stable association with the receptor, suggesting that the SH2 domain is binding to a heretofore unknown protein(s) necessary for proper EGFR function

    Cardiac-Specific Expression of the Tetracycline Transactivator Confers Increased Heart Function and Survival Following Ischemia Reperfusion Injury

    Get PDF
    Mice expressing the tetracycline transactivator (tTA) transcription factor driven by the rat α-myosin heavy chain promoter (α-MHC-tTA) are widely used to dissect the molecular mechanisms involved in cardiac development and disease. However, these α-MHC-tTA mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury in both in vitro and in vivo models in the absence of associated cardiac hypertrophy or remodeling. Cardiac function, as assessed by echocardiography, did not differ between α-MHC-tTA and control animals, and there were no noticeable differences observed between the two groups in HW/TL ratio or LV end-diastolic and end-systolic dimensions. Protection against ischemia/reperfusion injury was assessed using isolated perfused hearts where α-MHC-tTA mice had robust protection against ischemia/reperfusion injury which was not blocked by pharmacological inhibition of PI3Ks with LY294002. Furthermore, α-MHC-tTA mice subjected to coronary artery ligation exhibited significantly reduced infarct size compared to control animals. Our findings reveal that α-MHC-tTA transgenic mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury similar to cardiac pre- and post-conditioning effects. However, in contrast to classical pre- and post-conditioning, the α-MHC-tTA phenotype is not inhibited by the classic preconditioning inhibitor LY294002 suggesting involvement of a non-PI3K-AKT signaling pathway in this phenotype. Thus, further study of the α-MHC-tTA model may reveal novel molecular targets for therapeutic intervention during ischemic injury

    Tailoring next-generation biofuels and their combustion in next-generation engines

    Get PDF
    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels

    Implementation and evaluation of a Project ECHO telementoring program for the Namibian HIV workforce.

    Get PDF
    BACKGROUND: The Namibian Ministry of Health and Social Services (MoHSS) piloted the first HIV Project ECHO (Extension for Community Health Outcomes) in Africa at 10 clinical sites between 2015 and 2016. Goals of Project ECHO implementation included strengthening clinical capacity, improving professional satisfaction, and reducing isolation while addressing HIV service challenges during decentralization of antiretroviral therapy. METHODS: MoHSS conducted a mixed-methods evaluation to assess the pilot. Methods included pre/post program assessments of healthcare worker knowledge, self-efficacy, and professional satisfaction; assessment of continuing professional development (CPD) credit acquisition; and focus group discussions and in-depth interviews. Analysis compared the differences between pre/post scores descriptively. Qualitative transcripts were analyzed to extract themes and representative quotes. RESULTS: Knowledge of clinical HIV improved 17.8% overall (95% confidence interval 12.2-23.5%) and 22.3% (95% confidence interval 13.2-31.5%) for nurses. Professional satisfaction increased 30 percentage points. Most participants experienced reduced professional isolation (66%) and improved CPD credit access (57%). Qualitative findings reinforced quantitative results. Following the pilot, the Namibia MoHSS Project ECHO expanded to over 40 clinical sites by May 2019 serving more than 140 000 people living with HIV. CONCLUSIONS: Similar to other Project ECHO evaluation results in the United States of America, Namibia's Project ECHO led to the development of ongoing virtual communities of practice. The evaluation demonstrated the ability of the Namibia HIV Project ECHO to improve healthcare worker knowledge and satisfaction and decrease professional isolation

    Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

    Get PDF
    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits

    UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy

    No full text
    Hypertrophy increases the risk of heart failure and arrhythmia. Prevention or reversal of the maladaptive hypertrophic phenotype has thus been proposed to treat heart failure. Chronic β-adrenergic receptor (β-AR) stimulation induces cardiomyocyte hypertrophy by elevating 3′,5′-cyclic adenosine monophosphate (cAMP) levels and activating downstream effectors such protein kinase A (PKA). Conversely, hydrolysis of cAMP by phosphodiesterases (PDEs) spatiotemporally restricts cAMP signaling. Here, we demonstrate that PDE4, but not PDE3, is critical in regulating cardiomyocyte hypertrophy, and may represent a potential target for preventing maladaptive hypertrophy. We identify a sequence within the upstream conserved region 1 of PDE4D, termed UCR1C, as a novel activator of PDE4 long isoforms. UCR1C activates PDE4 in complex with A-kinase anchoring protein (AKAP)–Lbc resulting in decreased PKA signaling facilitated by AKAP–Lbc. Expression of UCR1C in cardiomyocytes inhibits hypertrophy in response to chronic β-AR stimulation. This effect is partially due to inhibition of nuclear PKA activity, which decreases phosphorylation of the transcription factor cAMP response element-binding protein (CREB). In conclusion, PDE4 activation by UCR1C attenuates cardiomyocyte hypertrophy by specifically inhibiting nuclear PKA activity

    The generation of live offspring from vitrified oocytes

    Get PDF
    Oocyte cryopreservation is extremely beneficial for assisted reproductive technologies, the treatment of infertility and biotechnology and offers a viable alternative to embryo freezing and ovarian grafting approaches for the generation of embryonic stem cells and live offspring. It also offers the potential to store oocytes to rescue endangered species by somatic cell nuclear transfer and for the generation of embryonic stem cells to study development in these species. We vitrified mouse oocytes using a range of concentrations of trehalose (0 to 0.3 M) and demonstrated that 0.1 and 0.3 M trehalose had similar developmental rates, which were significantly different to the 0.2 M cohort (P < 0.05). As mitochondria are important for fertilisation outcome, we observed that the clustering and distribution of mitochondria of the 0.2 M cohort were more affected by vitifrication than the other groups. Nevertheless, all 3 cohorts were able to develop to blastocyst, following in vitro fertilisation, although developmental rates were better for the 0.1 and 0.3 M cohorts than the 0.2 M cohort (P < 0.05). Whilst blastocysts gave rise to embryonic stem-like cells, it was apparent from immunocytochemistry and RT-PCR that these cells did not demonstrate true pluripotency and exhibited abnormal karyotypes. However, they gave rise to teratomas following injection into SCID mice and differentiated into cells of each of the germinal layers following in vitro differentiation. The transfer of 2-cell embryos from the 0.1 and 0.3 M cohorts resulted in the birth of live offspring that had normal karyotypes (9/10). When 2-cell embryos from vitrified oocytes underwent vitrification, and were thawed and transferred, live offspring were obtained that exhibited normal karyotypes, with the exception of one offspring who was larger and died at 7 months. We conclude that these studies highlight the importance of the endometrial environment for the maintenance of genetic stability and thus the propagation of specific genetic traits

    Rare mutations in the complement regulatory gene <i>CSMD1</i> are associated with male and female infertility

    Get PDF
    Infertility in men and women is a complex genetic trait with shared biological bases between the sexes. Here, we perform a series of rare variant analyses across 73,185 women and men to identify genes that contribute to primary gonadal dysfunction. We report CSMD1, a complement regulatory protein on chromosome 8p23, as a strong candidate locus in both sexes. We show that CSMD1 is enriched at the germ-cell/somatic-cell interface in both male and female gonads. Csmd1-knockout males show increased rates of infertility with significantly increased complement C3 protein deposition in the testes, accompanied by severe histological degeneration. Knockout females show significant reduction in ovarian quality and breeding success, as well as mammary branching impairment. Double knockout of Csmd1 and C3 causes non-additive reduction in breeding success, suggesting that CSMD1 and the complement pathway play an important role in the normal postnatal development of the gonads in both sexes
    corecore