326 research outputs found

    Shape-Induced Terminal Differentiation of Human Epidermal Stem Cells Requires p38 and Is Regulated by Histone Acetylation

    Get PDF
    Engineered model substrates are powerful tools for examining interactions between stem cells and their microenvironment. Using this approach, we have previously shown that restricted cell adhesion promotes terminal differentiation of human epidermal stem cells via activation of serum response factor (SRF) and transcription of AP-1 genes. Here we investigate the roles of p38 MAPK and histone acetylation. Inhibition of p38 activity impaired SRF transcriptional activity and shape-induced terminal differentiation of human keratinocytes. In addition, inhibiting p38 reduced histone H3 acetylation at the promoters of SRF target genes, FOS and JUNB. Although histone acetylation correlated with SRF transcriptional activity and target gene expression, treatment with the histone de-acetylase inhibitor, trichostatin A (TSA) blocked terminal differentiation on micro-patterned substrates and in suspension. TSA treatment simultaneously maintained expression of LRIG1, TP63, and ITGB1. Therefore, global histone de-acetylation represses stem cell maintenance genes independent of SRF. Our studies establish a novel role for extrinsic physical cues in the regulation of chromatin remodeling, transcription, and differentiation of human epidermal stem cells

    Differences in GlycA and lipoprotein particle parameters may help distinguish acute kawasaki disease from other febrile illnesses in children.

    Get PDF
    BackgroundGlycosylation patterns of serum proteins, such as α1-acid glycoprotein, are modified during an acute phase reaction. The response of acute Kawasaki disease (KD) patients to IVIG treatment has been linked to sialic acid levels on native IgG, suggesting that protein glycosylation patterns vary during the immune response in acute KD. Additionally, the distribution and function of lipoprotein particles are altered during inflammation. Therefore, the aim of this study was to explore the potential for GlycA, a marker of protein glycosylation, and the lipoprotein particle profile to distinguish pediatric patients with acute KD from those with other febrile illnesses.MethodsNuclear magnetic resonance was used to quantify GlycA and lipoprotein particle classes and subclasses in pediatric subjects with acute KD (n = 75), post-treatment subacute (n = 36) and convalescent (n = 63) KD, as well as febrile controls (n = 48), and age-similar healthy controls (n = 48).ResultsGlycA was elevated in acute KD subjects compared to febrile controls with bacterial or viral infections, IVIG-treated subacute and convalescent KD subjects, and healthy children (P <0.0001). Acute KD subjects had increased total and small low density lipoprotein particle numbers (LDL-P) (P <0.0001) and decreased total high density lipoprotein particle number (HDL-P) (P <0.0001) compared to febrile controls. Consequently, the ratio of LDL-P to HDL-P was higher in acute KD subjects than all groups tested (P <0.0001). While GlycA, CRP, erythrocyte sedimentation rate, LDL-P and LDL-P/HDL-P ratio were able to distinguish patients with KD from those with other febrile illnesses (AUC = 0.789-0.884), the combinations of GlycA and LDL-P (AUC = 0.909) or GlycA and the LDL-P/HDL-P ratio (AUC = 0.910) were best at discerning KD in patients 6-10 days after illness onset.ConclusionsHigh levels of GlycA confirm enhanced protein glycosylation as part of the acute phase response in KD patients. When combined with common laboratory tests and clinical characteristics, GlycA and NMR-measured lipoprotein particle parameters may be useful for distinguishing acute KD from bacterial or viral illnesses in pediatric patients

    Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes

    Get PDF
    The actin cytoskeleton is a classic biomechanical mediator of cell migration. While it is known that actin also shuttles in and out of the nucleus, its functions within this compartment remain poorly understood. In this study, we investigated how nuclear actin regulates keratinocyte gene expression and cell behavior. Gene expression profiling of normal HaCaT keratinocytes compared to HaCaTs over-expressing wild-type beta-actin or beta-actin tagged with a nuclear localization sequence (NLS-actin), identified multiple adhesive and cytoskeletal genes, such as MYL9, ITGB1, and VCL, which were significantly down-regulated in keratinocytes with high levels of nuclear actin. In addition, genes associated with transcriptional regulation and apoptosis were up-regulated in cells over expressing NLS-actin. Functionally, accumulation of actin in the nucleus altered cytoskeletal and focal adhesion organization and inhibited cell motility. Exclusion of endogenous actin from the nucleus by knocking down Importin 9 reversed this phenotype and enhanced cell migration. Based on these findings, we conclude that the level of actin in the nucleus is a transcriptional regulator for tuning keratinocyte migration.Peer reviewe

    Evidence for the Persistence of Food Web Structure After Amphibian Extirpation in a Neotropical Stream

    Get PDF
    Species losses are predicted to simplify food web structure, and disease‐driven amphibian declines in Central America offer an opportunity to test this prediction. Assessment of insect community composition, combined with gut content analyses, was used to generate periphyton–insect food webs for a Panamanian stream, both pre‐ and post‐amphibian decline. We then used network analysis to assess the effects of amphibian declines on food web structure. Although 48% of consumer taxa, including many insect taxa, were lost between pre‐ and post‐amphibian decline sampling dates, connectance declined by less than 3%. We then quantified the resilience of food web structure by calculating the number of expected cascading extirpations from the loss of tadpoles. This analysis showed the expected effects of species loss on connectance and linkage density to be more than 60% and 40%, respectively, than were actually observed. Instead, new trophic linkages in the post‐decline food web reorganized the food web topology, changing the identity of “hub” taxa, and consequently reducing the effects of amphibian declines on many food web attributes. Resilience of food web attributes was driven by a combination of changes in consumer diets, particularly those of insect predators, as well as the appearance of generalist insect consumers, suggesting that food web structure is maintained by factors independent of the original trophic linkages

    Nonsteroidal anti-inflammatory drugs, apoptosis, and colorectal adenomas

    Get PDF
    AbstractBackground & Aims: Observational studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the risk of colorectal neoplasia. The mechanism of this effect could be via modification of apoptotic activity in colonic mucosa. We examined grossly normal rectal mucosa in patients with adenomas and adenoma-free controls to assess the associations between NSAID use, adenomatous polyps, and apoptosis. Methods: Study participants were drawn from consecutive patients who underwent colonoscopy between August, 1998, and February, 2000. Biopsy specimens were taken from normal-appearing rectal mucosa 10 cm from the anal verge. Apoptosis was scored from coded, H&E-stained sections using morphologic methods. Proliferation was scored using whole crypt mitotic counts. Univariate and multivariate regression analyses were conducted to estimate crude and adjusted odds ratios (ORs). Results: There were 226 patients with adenomas and 493 adenoma-free controls. After adjusting for sex, age, race, and body mass index (BMI), individuals in the highest tertile of regular NSAID use were substantially less likely to have adenomas (OR 0.4; 95% CI: 0.2–0.7) compared with occasional or nonusers. Similarly, compared with the lowest tertile, persons in the highest tertile of rectal mucosal apoptotic activity were much less likely to have adenomas (OR 0.12; 95% CI: 0.07–0.20). NSAID use and apoptotic activity were not correlated (r = 0.10). Mucosal proliferation was not related to adenomas or NSAID use. Conclusions: Our observations suggest that NSAID use and higher levels of mucosal apoptosis are independently associated with a lower prevalence of adenomas. The study shows a strong field effect for apoptosis.GASTROENTEROLOGY 2002;123:1770-177

    Clonal Growth of Dermal Papilla Cells in Hydrogels Reveals Intrinsic Differences between Sox2-Positive and -Negative Cells In Vitro and In Vivo

    Get PDF
    In neonatal mouse skin, two types of dermal papilla (DP) are distinguished by Sox2 expression: CD133+Sox2+ DP are associated with guard/awl/auchene hairs, whereas CD133+Sox2− DP are associated with zigzag (ZZ) hairs. We describe a three-dimensional hydrogel culture system that supports clonal growth of CD133+Sox2+, CD133+Sox2−, and CD133−Sox2− (non-DP) neonatal dermal cells. All three cell populations formed spheres that expressed the DP markers alkaline phosphatase, α8 integrin, and CD133. Nevertheless, spheres formed by CD133− cells did not efficiently support hair follicle formation in skin reconstitution assays. In the presence of freshly isolated P2 dermal cells, CD133+Sox2+ and CD133+Sox2− spheres contributed to the DP of both AA and ZZ hairs. Hair type did not correlate with sphere size. Sox2 expression was maintained in culture, but not induced significantly in Sox2− cells in vitro or in vivo, suggesting that Sox2+ cells are a distinct cellular lineage. Although Sox2+ cells were least efficient at forming spheres, they had the greatest ability to contribute to DP and non-DP dermis in reconstituted skin. As the culture system supports clonal growth of DP cells and maintenance of distinct DP cell types, it will be useful for further analysis of intrinsic and extrinsic signals controlling DP function

    Super-Resolution Imaging Strategies for Cell Biologists Using a Spinning Disk Microscope

    Get PDF
    In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging

    Towards More Predictive, Physiological and Animal-free In Vitro Models: Advances in Cell and Tissue Culture 2020 Conference Proceedings

    Get PDF
    Experimental systems that faithfully replicate human physiology at cellular, tissue and organ level are crucial to the development of efficacious and safe therapies with high success rates and low cost. The development of such systems is challenging and requires skills, expertise and inputs from a diverse range of experts, such as biologists, physicists, engineers, clinicians and regulatory bodies. Kirkstall Limited, a biotechnology company based in York, UK, organised the annual conference, Advances in Cell and Tissue Culture (ACTC), which brought together people having a variety of expertise and interests, to present and discuss the latest developments in the field of cell and tissue culture and in vitro modelling. The conference has also been influential in engaging animal welfare organisations in the promotion of research, collaborative projects and funding opportunities. This report describes the proceedings of the latest ACTC conference, which was held virtually on 30th September and 1st October 2020, and included sessions on in vitro models in the following areas: advanced skin and respiratory models, neurological disease, cancer research, advanced models including 3-D, fluid flow and co-cultures, diabetes and other age-related disorders, and animal-free research. The roundtable session on the second day was very interactive and drew huge interest, with intriguing discussion taking place among all participants on the theme of replacement of animal models of disease
    corecore