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Abstract

In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular
features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of
biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy
(STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify
the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution
of ca. 80 nm; however higher resolution was possible .30 nm, dependant on the super-resolution image analysis algorithm
used. Our method uses low laser power and fluorescent probes which are available either commercially or through the
scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured
illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was
advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the
nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which
highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging.
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Introduction

Many biological structures are too small to be resolved by

standard confocal microscopy, which has a limit of resolution of

approximately 200 nm. Until recently this has restricted the scope

of research into small molecular structures and cellular complexes,

such as bacteria, viruses, membrane vesicles, nuclear ultrastructure

and cytoskeletal filaments. Super-resolution microscopy has

circumvented this resolution limit, described by Abbe’s law

[1,2], permitting observations of structures as small as 30 nm in

size. This technological revolution advances our understanding of

molecular cell biology as it reveals novel biological phenomena at

nanometre resolution.

Super-resolution techniques can be performed by a number of

approaches [3]; Structured Illumination microscopy (SIM) is a

technique where a grid pattern, generated from diffraction of light,

is super-imposed on the specimen and rotated in steps. The output

dataset is processed with specialised algorithms giving an

improvement in lateral resolution by a factor of two [4]. Other

techniques, such as STED, GSD, SSIM, PALM, STORM,

FPALM, dSTORM, GSDIM and PAINT rely upon the principles

of Reversible Saturable Optical Fluorescence Transitions (RE-

SOLFT) microscopy. In RESOLFT proteins or organic fluor-

ophores are switched between dark and fluorescent states

stochastically, data are captured and processed to give an output

image with resolution refined beyond the Abbe limit of 200 nm

[2,3,5].

Methods of super-resolution which use stochastic molecular

switching, do not require specialised microscopy systems [5];

instead they generate super-resolved images by iteratively activat-

ing a set of photo-switchable fluorophores and precisely fitting the

point of emission through complex image analysis [6,7]. Tech-

niques such as photo-activation light microscopy (PALM) [6],

stochastic optical reconstruction microscopy (STORM) [8] and

ground state depletion microscopy (GSDIM) [9,10] all operate on

the statistical methods principle. PALM uses photo-switchable

fluorescent proteins and STORM/GSDIM photo-switchable

fluorescent dyes to generate stochastic fluorescent emissions which

are imaged and then processed to refine image resolution [5]. The

methodologies employed by image processing algorithms for

statistical SR methods fall broadly into two categories; specific

identification of spatially separate individual fluorescent emission

events and fitting of these events in an reconstructed image, e.g.

RainSTORM [11], QuickPALM [12] and GLRT [13] or higher

order statistical analysis of intensity fluctuations e.g. SOFI [14,15],

3B [16], Deconvolution-STORM (DeconSTORM) [17] and

Faster-STORM [18] (Table S1). These latter group of image

analysis methodologies, such as SOFI and Decon-STORM do not
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require single molecule activations and were developed for super-

resolution imaging of structures which may be more densely

labelled by fluorescent dyes [15,17]. For all RESOLFT methods

using iterative imaging of stochastic light emission the photon yield

of the dye, detector sensitivity and detector resolution play a key

role in determining the level of resolution improvement that can

be obtained [19].

PALM, STORM and other forms of statistical super-resolution

methodology require only a standard light microscope and

electron-multiplying charge-coupled device (EMCCD) camera as

hardware [5]. For these techniques to work well, image datasets

must be acquired at fast frame rates and with good signal-to-noise

(S/N). This ensures a sufficient number of stochastic fluorescent

emission events are collected for the super-resolution image

analysis algorithms to work accurately [1]. It can be challenging

to obtain good S/N in PALM/STORM using biological samples

in widefield illumination. This is due to photo-bleaching of the

fluorophore labelling the epitope of interest, which reduces the

number of fluorophores actively emitting light; and artefacts

arising from photo-interactions above and below the focal plane.

The out of focus light is generated from fluorescent emission of

labelled proteins that are not in the desired plane of focus and the

viscous nature of the cytoplasm, which scatters light [5]. These

photo-interactions, from above and below the focal plane, impede

correct reconstruction of the super-resolution image.

Total Internal Reflection Microscopy (TIRF) overcomes these

issues by creating an evanescent wave that only illuminates a thin

(,100 nm) optical section at the immersion oil and coverslip

interface omitting out of focus light [20]. The excellent S/N this

achieves makes TIRF the standard method for PALM and

STORM imaging. Unfortunately, TIRF visualisation is not

appropriate for all biological samples due to the limited imaging

depth [20]. This means that structures further away from the

coverslip than 100 nm such as; the cells’ nucleus and organelles

immediately surrounding the nucleus such as the endoplasmic

reticulum, mitochondria and Golgi apparatus, are cannot be

imaged using TIRF based PALM/STORM. Recent research has

tried to overcome this problem by using a TIRF microscope with

double objectives to visualise the actin cytoskeleton at the very top

and the bottom of the cell [21]. Selective plane illumination

microscopy (SPIM) has also been used to generate 3D super-

resolution images [22]. Another alternative is ‘near TIRF’ where a

highly inclined laminated optical light sheet (HILO) is generated

using an intense laser illumination of light, angled through a high

numeric aperture objective [23]. However, HILO only increases

the depth of light penetration into the cell to 500 nm, so cellular

structures which are 2–3 mm inside the cell such as the nucleus,

Golgi apparatus, Endoplasmic reticulum and mitotic spindle still

cannot be visualised.

In widefield microscopy all of a specimen in the optical path of

the microscope is excited by the light source. This means for a

point source there will be in focus light and out of focus light

present at the detector (Figure 1A).It is particularly important to

improve the signal to noise ratio when imaging the nucleus at

super-resolution as it is a dense structure in the centre of the cell

and so a lot of out of focus light is present which degrades the

quality and accuracy of the output image. Spinning disk confocal

microscopy (SD) presents an excellent solution to this as it

functions as a widefield confocal, selectively illuminating one focal

plane with thousands of pinholes and omitting out of focus light

(Figure 1A) [24–26]. The spinning disk speeds up the acquisition

time, compared with a standard raster scanning confocal and

improves the S/N ratio compared with a standard widefield

epifluorescence. Combining the spinning disk together with

super-resolution imaging allows a truly single plane super-

resolution image to be acquired at any z-axis (Figure 1A), which

allows any plane in the full depth of a cell to be imaged [25].

Here we combined the flexibility of an SD microscope with the

simplicity of using PALM/STORM probes to present a novel

methodology using spinning disk microscopy for super-resolution

imaging (SDSI). We further present a comparative study of several

image analysis algorithms available for PALM/STORM to inform

potential users of the advantage different image analysis strategies

provide for the interpretation of their particular datasets.

Results

Spinning disk super-resolution imaging set up
Spinning disk super-resolution imaging (SDSI) was developed to

facilitate the super-resolution imaging of proteins or organelles at

any single location in the cells axial (z) plane across a large field of

view.

Figure 1. Setup of spinning disk stochastic imaging (SDSI)
system and evaluation of imaging capabilities. (A) Schematic
diagram describing how the point spread function is refined in a
selected axial plane by spinning disk confocal microscopy and super-
resolution image processing. (B) Diagram showing the configuration of
the SDSI microscope, abbreviations are as follows. EMCCD = Electron
multiplied Charge Coupled Device camera. FW = Filter wheel. SD = Yo-
kagawa CSUX1 spinning disk, M = mirror. PCF = Piezo coupled focus
feedback unit. OB = Objective. (C) Workflow of the SDSI experiments
used in this paper, Briefly samples are prepared with probes for either
PALM or dSTORM, next samples are imaged and finally SR data is
generated using the SOFI image processing algorithm.
doi:10.1371/journal.pone.0074604.g001

Spinning Disk Super Resolution Microscopy
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To implement SDSI it was necessary to perform the following

modifications to our spinning disk set up (Materials and Methods,

Figure 1B): Environmental vibrations were minimized by remov-

ing all non-essential equipment from the optical table and

incorporating active damping legs to the optical bench

(Figure 1A and Figure S1A–C) and isolating the system from air

currents. This reduced system drift to around 40 nm reasonably

consistently in SDSI experiments (Figure S1C). The accuracy of

super-resolution image assignment is directly correlated to the

number of photons detected and pixel size of the detector [6,19]

(materials and methods). The spinning disk unit (CSU) itself is

moderately light inefficient [26,27] therefore laser power was

increased slightly above levels normally used in routine SD

imaging to maximise sufficient photon counts. We investigated

different detectors for SDSI and identified that an EMCCD

camera with an 70% quantum efficiency and 8 mm pixels was

required, as a minimum, to detect sufficient photons for the super-

resolution image reconstruction on our system using a 1006
1.4NA objective. This is because the number of photons detected

and pixel size of the detector determine the amount of resolution

refinement as explained in the equation given by Thompson et al

[19] (materials and methods). We also found it necessary to use

fluorescent probes with high quantum efficiency for data

reconstruction, and confirmed that TdEos, mEOS, Dronpa,

AlexaFluor555 and AlexaFluor647 performed well in our exper-

iments.

As proof of principle, we performed experiments that visualised

cellular structures smaller than the resolution limit of a standard

confocal microscope. We also examined two different super-

resolution imaging methodologies PALM and STORM to

determine if both of these techniques could be used with SDSI.

Eos Actin was used to generate PALM images of the actin

structure in the lamellipodia of cells (Figure 2A). The Eos Actin

dataset was also used to confirm and optimise the occurrence and

collection of photo-switching events (Figure S2A and B). Antibod-

ies were used to generate STORM images of Connexins

trafficking through the cell (Figure 2B). PALM required cells to

be transfected with a photo-convertible probe that switched

between the off and on state through illumination from two lasers.

To determine if PALM could work with SDSI, HeLa cells were

transfected with tdEos-Actin. Actin was imaged using simulta-

neous imaging of the sample with an activation laser at low power

(405 nm laser, 1–5 mW) and an imaging laser at medium power

(561 nm laser, 10–12.5 mW). Over the course of the experiment

the laser power of both the activation and imaging laser were

modulated to ensure only a sparse population of fluorophores were

present in each frame (Figure 2A and B). dSTORM microscopy

relies on a combination of standard chemical dyes and a bespoke

image buffer that is used to reactivate dyes, which are in the

fluorescent off-state (i.e. not emitting light but not photo-bleached)

(Materials and Methods) [10]. For STORM microscopy the

composition of the imaging buffer was modified to account for the

dye used [18]. To visualise Alexa Fluor 647 labelled Connexin

vesicles cells were again imaged carefully by monitoring the laser

power (640 nm laser, 8–16 mW). Laser power was altered to

ensure a sparse set of fluorophores were present and that photo-

bleaching of the AlexaFluor647 was minimised to ensure sufficient

signal was available for image reconstruction (Figure 2B) [10]. All

SDSI images were processed using the 3rd order SOFI algorithm

implemented in the Localizer software suite [13,14] achieving a

minimum resolution of 80 nm (Figure S3A). Two colour super

resolution imaging was conducted by combining photoswitchable

fluorescent proteins and dyes combining PALM and dSTORM

sample preparation methodologies, by transfecting cells with

Eos-Histone 2B fluorescent proteins (PALM) and LaminA/C

labelled with AlexaFluor647 (dSTORM) (Figure 2C). The

presence of the buffer for dSTORM did not perturb photo-

conversion events for Eos fluorescent proteins (Figure 2C). For

correct image registration of two colour data was correctly 100 nm

gold beads were added to the sample as fiduciary marks and left to

settle onto the glass. The electrostatic charge on the glass was

sufficient to hold the beads in place during imaging. The gold

beads were visible in all imaging channels, we also found that

40 nm gold beads could be used if a higher level of resolution

accuracy was required. Taken together these data show that both

PALM and dSTORM sample preparation methodologies can be

used separately and together to acquire super-resolved data on a

spinning disk microscope.

SDSI image analysis
All super-resolution data reconstruction algorithms require a

certain minimum number of photo-conversion events to correctly

assign structure. Under-sampling of super-resolution data can lead

to artefacts where the structure is not completely assigned. To find

the best image analysis methodology for SDSI comparative studies

between seven different algorithms, (Table S1 and Materials and

Methods) were conducted. Three separate datasets were used: a

simulated dataset of overlapping emitters [17] (Movie S1) this

dataset was chosen to model data from our biological system as it

comprises simulated overlapping emission events. A dataset

generated using recombinant actin filaments visualised using

TIRF (Movie S2) (a kind gift from D.Metcalf, NPL, UK), and Eos-

actin filaments in cells generated by SDSI (Movie S3). Analysis of

the reconstructed simulated data showed the single molecule fitting

algorithms QuickPALM and GLRT could not reconstruct the

simulated dataset, this is because it contained overlapping emitters

(Figure 3A). Of the algorithms that reconstructed the simulated

Figure 2. SDSI super resolution imaging using both PALM and
STORM. (A) Comparison of SD and PALM images (processed by SOFI)
of Eos-Actin, (B) Comparison of SD and d-STORM images of Connexin
43, Secondary Fab fragment antibodies conjugated to AlexaFluor647
were used for dSTORM imaging, SR data was generated using 3rd order
SOFI, in both images bar = 1 mm. (C) Comparison of SD and SDSI
combining PALM and dSTORM imaging of Eos-Histone 2B (PALM) and
Lamin A/C (dSTORM). Secondary Fab fragment antibodies conjugated
to AlexaFluor647 were used for dSTORM imaging. SR data was
generated using 3rd order SOFI. Arrow indicates individual histone
complexes, bar = 2 mm.
doi:10.1371/journal.pone.0074604.g002

Spinning Disk Super Resolution Microscopy
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dataset, FasterSTORM and DeconSTORM gave smoothened

results, whereas RainSTORM and SOFI produced results more

representative of the sample data (Figure 3A). We also performed

comparative analysis with a noisy background sample. We found

GLRT, and RainSTORM would on occasion mis-assign the

background as a positive signal (Figure 3B). The spatial fitting for

both TIRF and SR data varied between the algorithms with

QuickPALM and FasterSTORM reported to give the highest

accuracy (Figure 3B) [12,18]. However, visual analysis of both the

TIRF and SDSI images showed that only SOFI and Rain-

STORM reconstructed all of the features in the original image

(Figure 3A). The partial reconstruction of images is likely due to

either overlapping emitters, which the algorithms rejects (Table

S1), or a low number of stochastic emitting events occurring in the

region reconstructed during data collection; collecting more data

could remedy the latter problem. The TIRF dataset did appear to

be slightly better resolved; most likely due to more photo-

conversion events being detected by TIRF than SDSI due to light

inefficiency of the spinning disk or because of increased sensitivity

of the camera on the TIRF system (Figure 3A and Figure S3B).

This may explain why Deconvolution STORM processed TIRF

data well and the SDSI data poorly. FasterSTORM was not able

to process SDSI images (Figure 3A), which may be due to the

optics of spinning disk not being compatible with the signal

processing algorithms of FasterSTORM (Table S1) [18].

In terms of retention of image intensity information: SOFI

performed the best with RainSTORM also producing excellent

data, (Figure 3A and C). QuickPALM, GLRT, FasterSTORM,

Deconvolution STORM images had punctate and broken

appearances in the TIRF and SDSI data. This should not be

the case as actin is filamentous as transmission electron microscopy

studies have shown [28]. There was a considerable variation in

speed of processing, which appeared not to correlate to refinement

in resolution accuracy or retention of intensity information

(Figure 3C). We found that 3B [16] was unable to reconstruct

this size of dataset using a standard lab computer as the algorithm

crashed and so excluded it from the analysis. We anticipate that

with a multicore image processing cluster that the 3B algorithm

would perform admirably. In summary SOFI gave the best

compromise between refinement of spatial resolution of the image,

retention of image intensity information and convincing image

rendering for SDSI data. Therefore for the remainder of studies

the SOFI algorithm, as implemented in Localizer was used for SR

image processing.

Comparative study between SDSI and SIM
To examine the validity of the SDSI methodology a parallel

study was performed using SIM. SIM differs from stochastic SR

methods as the sample is visualised using standard widefield

illumination and a structured light pattern is projected onto the

sample. Superimposing two or more of these patterns on one

another causes an interference pattern (termed moiré pattern),

containing harmonic frequencies not available in standard

microscopy. Data processing is then carried out to generate an

image with resolution of around 120 nm, (Figure S3A) [4,29]. For

both SDSI and SIM imaging specific cellular components of HeLa

cells were labelled with fluorescent probes compatible with PALM

and STORM methodologies. SIM was shown to be advantageous

for visualising structures in 3D as datasets comprising the whole

cell could be collected between 2 and 10 minutes, although

resolution was limited to 120 nm. SDSI could only be used to

visualise structures in a single plane, using currently available

image analysis algorithms, as samples bleached during data

acquisitions of longer than 10,000 frames.

Comparing the single plane SDSI image to the SIM showed a

resolution enhancement of fine structured microtubules in the

mitotic spindle (Figure 4A). Although SIM gave a better 3D

reconstructed image of the mitochondria, SDSI images processed

using the 3rd order SOFI algorithm showed smaller (80 nm)

mitochondria (Figure 4B and C). It was found that Alexa-Fluor

dyes gave sufficiently high quantum yields to be used in correlative

SIM/STORM microscopy experiments as both had high quan-

tum yield and low photo bleaching. Unfortunately, it was more

difficult to carry out correlative PALM/SIM studies due to the

fluorescent proteins not being photo-stable enough to withstand

the intense illumination required for 3D SIM. Eos-FP probes also

performed poorly in SIM studies as they were liable to photo-

convert in the process of imaging, generating artefacts of intensity

in the output image. However, we found that the Dronpa

fluorescent protein performed better than Eos, making it possible

to visualise mitochondria (Figure 4B). The 150 nm resolution of

Dronpa-Mito in SIM studies was substantially worse than the SIM

spindle images generated using Mitotracker-Orange due to the

Dronpa-Mito signal being degraded during SIM image acquisition

(Figure 4C).

SDSI of the nucleus
The nucleus is a challenging structure to visualise using current

super-resolution methodologies as it is above the maximum lateral

height of visualisation of both TIRF (100 nm) and HiLo (500 nm)

(Figure 5A). To compare SDSI with widefield epi-illumination

(WF) super-resolution we visualised HP1a, a marker of hetero-

chromatin in the nucleus using dSTORM sample preparation.

HP1a is present throughout the nucleus and gives punctate

staining which can be seen in 3D (Figure 5B). This caused serious

problems with WF as the photo-interactions of the labelled HP1a
were above and below the plane of focus masked photo-switching

in the focal plane (Figure 5B). This meant the SR image processing

using the SOFI algorithm was unable to enhance the resolution of

WF images or correctly assign structures (Figure 5B). The raw

image acquired using the spinning disk system had little out of

focus light present as the image was confocal (Figure 5B).

Therefore photo-interactions from out of focus light were excluded

and the whole image could be accurately processed by SOFI

(Figure 5B and C). We found WF imaging of actin, on the basal

layer of the cell, gave slightly better data as there are no photo-

interactions from out of focus light from below the focal plane

(Figure S4A and B). However the resolution improvement with

actin was still above the Abbe limit (Figure S4C) whereas SDSI

can give super-resolved actin data (Figure 2A).

To show the flexibility of the technique two coloured SDSI was

used to resolve hetero-chromatin structures in the medial plane of

the nucleus (Figure 5A and D). HP1a and LaminA/C were both

prepared using dSTORM sample preparation methodologies,

with HP1a being labelled with AlexaFluor555 and LaminA/C

with AlexaFluor647, we ensured that the super-resolution sample

buffer was compatible with both fluorophores for dSTORM [10].

The heterochromatin fluorescence appeared more diffuse by SD

microscopy, while SDSI super-resolution image analysis revealed

several small discrete objects ranging from small foci, most likely

less than 100 nm in diameter, to larger agglomerations 600 nm in

diameter (Figure 5D and E). In addition the background

subtraction achieved by SOFI clearly allowed visualisation at

high resolution of structures where heterochromatin was absent,

such as the nucleolus and PML bodies. SOFI reconstruction

revealed regions which appeared as smaller ‘beads’ of heterochro-

matin whereas confocal microscopy showed only large diffuse

staining (Figure 5D and E). Detailed analysis of Lamin A/C also

Spinning Disk Super Resolution Microscopy
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showed variations in the width of the nuclear membrane between

100–200 nm, SIM studies confirmed this observation [30].

Multicolour analysis of our data showed that small puncta of

heterochromatin are found immediately adjacent to the nuclear

membrane (Figure 5D, indicated by arrow). This is a significant

improvement on the confocal data which shows that the nuclear

membrane and heterochromatin are localised, which is an

erroneous interpretation of the data. Many scientific studies of

colocalization could benefit from super-resolution imaging as it

provides better information about the precise localization of

proteins and obtains stronger and clearer data about protein-

protein interactions or their absence.

Conclusions
We show that multi-spectral SDSI can collect super-resolution

images with good S/N, resolved in any selected axial plane within

a cell. We compared both PALM and STORM and found that

either these techniques can be used either separately or together

for generation of super-resolution data. We examined seven

different algorithms for processing SD data and found SOFI gave

the best retention of image intensity information and provide the

most accurate data reconstruction, in terms of spatially assigning

all of the emission data found in the original images. This decision

was aided by the user friendly GUI for SOFI in the Localizer suite

of super-resolution algorithms and the fast data processing times

[13]. The speed of processing was important as we intended to use

SDSI for imaging multiple large image datasets in 2–3 colours. As

SOFI only requires 2000 frames of data for accurate assignment of

all of the fluorophore used in this study it would be possible to

expand SDSI in future work to encompass applications such as

high content screening, imaging of multiple epitopes, and live

imaging.

SDSI generated data was comparable to or an improvement on,

the SIM dataset. In summary, the SDSI technique was flexible

enough to analyse a range of cellular structures in a fast and

reliable manner. Our comparative study showed that SIM was

more appropriate for imaging 3D structures, such as the mitotic

spindle as even the fastest super-resolution data collection and

Figure 3. Comparative study of different stochastic super-resolution image processing algorithms. (A) Reconstructed super-resolution
images from: a simulated dataset of 800 frames, a 64664 pixel, 5000 frame dSTORM dataset of actin filaments labelled with AlexaFluor647 visualised
by TIRF microscopy, a 90690 pixel 5000 frame PALM dataset of Hela cells transfected with Eos-Actin. SR images were generated using DeconSTORM,
FasterStorm, QuickPALM, RainSTORM, 3rd order SOFI and GLRT implemented in the Localizer image analysis package respectively. An image of the
raw, unreconstructed, data is shown for comparison. For TIRF and SD this is the average of 8 frames of data, for the simulated data a maximum
intensity projection of the whole dataset is shown. (B) Graphs showing the percentage of mislocalized pixels in datasets reconstructed from a noisy
background image. The noisy background image was generated by acquiring 5000 frames of images of a red fluorescent Perspex slide. Graph
showing the predicted localization precision between all of the investigated algorithms. (C) Chart comparing retention of intensity information,
processing speed, software interface and ease of use of the software of all the algorithms in the comparative study.
doi:10.1371/journal.pone.0074604.g003
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image processing, would still require several hours compared to

10 minutes of SIM imaging. However, PALM/STORM SDSI

could generate higher resolved data than SIM for single plane

imaging dependant on the image processing algorithm used. Both

SIM and PALM/STORM techniques required strong fluoro-

phore labelling and powerful lasers to generate sufficient data for

image analysis, due to the signal degradation during data

collection and processing.

SDSI is a powerful addition to the range of super-resolution

methodologies as it is capable of resolving structures that are

located in the centre of the cell where there is a considerable

amount of light scattering and densely labelled structures. In the

comparative study widefield epi-fluorescence based methodologies

could not achieve this (Figure 5B, Figure S4) and TIRF is not able

to visualise the nucleus. SDSI has the potential of being applied to

visualise multiple epitopes, at high resolution, in the centre of cells

instead of cryosectioning or transmission electron microscopy. The

increased resolution of SDSI allows accurate interpretation of

proteins which are closely connected and are distant neighbours in

a disparate group. It also provides an improved assignment of the

size and composition of protein-protein complexes. We have

shown that multicolour images can be collected and processed in

less than two hours using fast image analysis algorithms. This

technique provides the utility in multi-parametric biological

studies and delivers it to within easy reach of the biomedical

researchers who are not microscopy specialists. Naturally if a

question demanded higher resolution than 80–100 nm further

spatial resolution can be obtained by using other algorithms,

although these would require collecting a larger dataset with more

photo-interactions for accurate image reconstruction making it

impossible to carry out 3D or live imaging studies due to

photobleaching/phototoxicity. RainSTORM gave better localiza-

tion accuracy than SOFI and provided better preservation of

image intensity information, in addition it has a useful toolkit for

registration of multicolour images [11]. However with our

implementation of super-resolution on a spinning disk microscopy

and SOFI image processing it would be possible to expand the

technique to such applications as live cell imaging, high content

screening and 3D imaging. Overall we show that this method

presents an encouraging step forward for the wider application of

super-resolution methodologies for the biological researcher.

Figure 4. Comparison between single channel SDSI super-
resolution imaging and SIM imaging in a medial plane of HeLa
cells. (A) Comparison of SD, SDSI-dSTORM and SIM images of the
mitotic spindle, the spindle was visualised using b-tubulin antibodies.
Secondary Fab fragment antibodies conjugated to AlexaFluor647 were
used for dSTORM imaging. SR data was generated using 3rd order SOFI,
bar = 1 mm. (B) Comparison of SD, SDSI-dSTORM and SIM images of the
mitochondria, the mitochondria were visualised by transfecting cells
using the Dronpa-Mito construct for PALM imaging, SR data was
generated using 3rd order SOFI, bar = 1 mm. (C) Line-scans (indicated in
yellow parenthesis) through the mitotic spindle and mitochondria
comparing SD resolution with SDSI and SIM.
doi:10.1371/journal.pone.0074604.g004

Figure 5. Multispectral super-resolution imaging of the nucle-
us. (A) Point scanned confocal images showing orthogonal axial (x,z)
view of Histone H3 (Red), LaminA/C (Green) and Nuclei (Blue). (B) Wide-
field epifluorescent (WF) and spinning disk (SD) x,y and x,z images.
Yellow line in x,z images indicates the plane shown in the x,y image of
hetero-chromatin in the nucleus visualised using HP1a, bar = 2 mm. (C)
dSTORM images of hetero-chromatin in the nucleus visualised using
HP1a antibodies acquired by widefield epifluorescence (WF) and
spinning disk confocal (SD). SR data from both WF and SD images
was generated using 3rd order SOFI, bar = 1 mm. (D) Comparison of SD
and SDSI images of hetero-chromatin visualised using HP1a antibodies
and the nuclear membrane visualised using LaminA/C antibodies.
Secondary FAb fragment antibodies conjugated to AlexaFluor555 and
647 were used for dSTORM imaging, SR data was generated using 3rd

order SOFI, bar = 1 mm. Lower panel shows high-resolution region
(indicated by orange box in upper panel) of heterochromatin,
bar = 1 mm. (E) Intensity profiles, through regions indicated by yellow
parenthesis in E, comparing SD resolution with SDSI.
doi:10.1371/journal.pone.0074604.g005
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Materials and Methods

Cellular sample preparation and transfection
HeLa cells were grown as described elsewhere [29]. For

transfection, cells were seeded onto glass-bottomed dishes (WPI,

UK) at a density of 26104 cells ml21 and transfected one day after

plating using jetPRIMETM (Polyplus transfection, France) accord-

ing to the manufacturers protocol with either 1 mg Eos-actin, Eos-

H2B or Dronpa-Mito DNA. Cells were incubated for 48 hours

after transfection then fixed in 4% Paraformaldehyde diluted from

a 16% EM grade stock (Agar Scientific, UK). For STORM/SIM

imaging, cells were permeabilized using 0.16 Triton x100 and

incubated with primary antibodies raised against b-Tubulin

(Sigma, UK), Connexin 43 (BD, UK), LaminA/C (Santa Cruz

Biotech, USA), raised against mouse and HP1a (New England

Biolabs, USA) raised against rabbit. For STORM imaging samples

were incubated with anti—mouse Fab fragment AlexaFluor647

secondary antibodies or AlexaFluor 555 anti-rabbit antibodies

(Invitrogen, UK). For SIM imaging anti-mouse Fab fragment

AlexaFluor 594 secondary antibodies were used. For SIM F-actin

was labelled with Alexa-Fluor488 phalloidin (Invitrogen, UK) and

nuclei were labelled using DAPI (Sigma, UK).

Imaging buffer
For SDSI samples were placed in imaging medium consisting of

PBS containing 100 nM 2-mercapto-ethanol, to promote photo-

switching, 10 nm ascorbic acid to reduce reactive oxygen species

which may damage fluorophores [31] and an oxygen scavenging

system [18]. Prior to imaging the medium was degassed by

bubbling through nitrogen for 10 minutes. 100 nm gold beads

were added to the sample as fiduciary marks (BBI Gold, UK).

These are left to settle onto the cells and coverslip for 1 hour prior

to imaging and used for post-hoc drift correction and multispectral

image registration.

Spinning disk super-resolution optical setup
The SDSI system was built on an inverted optical microscope

(Nikon TE2000E), with a Yokagawa Nipkow spinning disk unit

(CSU X1 DSD, Yokagawa Electric Corporation). Four solid state

lasers were used as the excitation source: a 405 nm (100 mW),

488 nm (50 mW), 561 nm (50 mW) and 640 nm (100 mW)

(Coherent Inc. CA. USA), all lasers were collimated, combined

and coupled into an optical fibre (Andor laser combiner, Andor

Technologies, UK). The fluorescence emission was filtered using a

quad dichroic mirror (Semrock, USA). All imaging was carried out

using a 1006 1.4N.A Plan Apochromat VC objective (Nikon,

UK). Images were collected on a xIon885 EMCCD camera

(Andor Technologies, UK).

For SDSI data was acquired using streaming to the camera,

images acquisition rates varied between at 4–6 frames per second.

Data was collected using IQ2 software (Andor Technologies, UK).

Throughout all SDSI experiments laser power was adjusted to

ensure a sparse field of stochastic fluctuations were continuously

visible (Figure S2). For SDSI PALM probes were simultaneously

activated by a 405 nm (0.5–6% power) and imaged and bleached

with either a 488 nm or 561 nm laser (15–30% power). For

STORM imaging, the dSTORM methodology was used as

described elsewhere [10], For dSTORM imaging 8–20% of the

100 mW power of the 647 nm laser was used. Analysis of

fluctuation of intensity of individual actin foci throughout the

experiment showed these imaging conditions could capture of

photo-conversion events (Figure S2A and B).

Super-resolution image analysis, including algorithm
comparison

Data analysis was carried out on a Dell Alienware PC, 12 GB

RAM, Core I5 3.0 GHz quad core processor, 500 GB hard disk.

Prior to analysis images were reconstructed and re-registered using

FiJi (http://fiji.sc/wiki/index.php/Fiji). To optimise the number

of frames for SDSI imaging a 105 frame dataset of 100 nm Tetra

speck beads (Invitrogen, UK) was acquired using a 561 nm laser.

Data was reconstructed using SOFI algorithms using input

datasets of 200, 500, 1000, 2000, 4000, 6000, 8000 and 10,000

frames (Figure S3C). The reconstructed area of the bead was then

measured and was repeated for five separate beads. The data

analysis showed that a minimum of 2000 frames were required for

consistent data reconstruction of the 100 nm beads using SOFI

(Figure S3C). An estimate of the localization error along a single

axis in the x–y imaging plane showed, for our system, the

localization error was 18 nm for single molecule imaging

(Materials and Methods). This is due mainly to the small pixel

size of our camera, as SDSI detects approximately half the number

photo-switching events TIRF does, although individual emission

events can be detected (Figure S2A and B and 3B). Using the actin

test dataset we found 3rd order SOFI was able to obtain a

resolution standard of 80 nm (Figure S3A).For the super-

resolution image analysis comparison three datasets were used:

A simulated dataset, 64664 pixel and 800 images with some

simulated overlapping emission events, taken from Mukamel et al

[17] (Movie S1). A dataset of recombinant actin filaments labelled

with AlexaFluor 647 obtained by TIRF microscopy: 64664 pixels,

5000 frames, which was a kind gift from Dr D. Metcalf, NPL,

London UK (Movie S2). A dataset of tdEos-Actin from transfected

Hela cells obtained by spinning disk microscopy: 90690 pixels

5000 frames (Movie S3). 3B and QuickPALM image analysis was

carried out using the FiJi plugin [12,16]. RainSTORM [11] image

analysis was carried out in Matlab, (www.mathworks.co.uk).

FasterSTORM [18] and DeconSTORM [17] analysis were

carried out according to published instructions. The Localizer

suite of super-resolution image analysis algorithms [13] was used

to conduct SOFI [14] and GLRT [32] image analysis. For the

comparative studies each separate test dataset was processed by all

of the algorithms and the reconstructed images compiled and

measured. A 5000 frame ‘noisy background’ set of images was

acquired by using a red fluorescent Perspex slide on the SDSI

system to determine if the algorithms would incorrectly assign

noise as signal. All data analysis of reconstructed images was

carried out using FiJi (http://fiji.sc/Fiji).

Drift correction
To determine the SDSI system accuracy 100 nm Tetraspeck

fluorescent microspheres (Invitrogen, UK) were dried onto glass

bottomed dishes (WPI, FL, USA). Bead samples were imaged

continuously for 45 minutes and particles tracked using the

Particle Tracker plugin in FiJi (http://fiji.sc/wiki/index.php/

Particle_Tracker) (Figure S1A–C). Lateral image drift was reduced

by placing the system in an environmental enclosure which

maintained a stable temperature. To maximise stability the

environmental chamber surrounding the system was pre-warmed

for 4–6 hours to 32uC prior to imaging for all experiments

(Figure 1A and Figure S1). A lateral drift of around 40 nm is

assumed for all experiments, however the gold beads are tracked

for each experiment and if lateral drift above 40 nm is observed

the experiment is rejected and not processed. Axial drift of the

objective was corrected using a capacitive feedback system (Pi-Foc

721, Physik Instruments, UK).
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Spinning disk system calibration
PSFs were measured from 100 nm Tetraspeck beads, images

were processed by SOFI or QuickPALM and were fitted using the

MetroloJ plugin in ImageJ (http://imagejdocu.tudor.lu/doku.

php?id = plugin:analysis:metroloj:start) (Figure 1C). The localiza-

tion accuracy of our system was determined using the standard

equation for determination of localization error [6,19]
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where, s is the standard deviation of the PSF, a is the pixel size in

the image (taking into account the system magnification), Nm is the

total number of photons measured from molecule m, and bm is the

number of background photons collected in the fitting window

used for molecule m. To determine photon number 5000 frames

of data were acquired of td-Eos Actin. Photon number was

estimated using FiJi and information from the camera suppliers

(http://www.andor.com/learning-academy/count-convert-quantify

ing-data-in-electrons-and-photons). To determine the resolution

achieved by SOFI this dataset was also analysed.

SIM microscopy
3DSIM was performed on a microscope system (OMX version

2; Applied Precision, USA) as described previously [29]. Raw

3DSIM images were processed and reconstructed using algorithms

implemented in SoftWoRx software (Applied Precision, USA)

[4,33,34].

Widefield and spinning disk microscopy
Widefield epi-fluorescent microscopy was carried out by

removing the spinning disk from the optical path in our system.

All other components were identical. For widefield analysis HeLa

cells were processed as described above. F-actin was labelled with

Alexafluor 555-phalloidin. Spinning disk microscopy images were

captured using the same software, laser power, camera gain and

exposure time as for SDSI imaging. The widefield and spinning

disk images presented are the average of 8 frames of data.

Supporting Information

Figure S1 Quantification of axial drift in the super-
resolution system. Drift measurements were obtained from

100 nm Tetraspeck beads (Invitrogen). Imaging conditions were

identical to those used in PALM/STORM data acquisition, where

data are streamed to the camera at a rate of 4–6 frames per

second. Data are pooled from 10 independent tracks, (A) Drift in

the x plane in the SDSI system during a 2000 frame data

acquisition series. (B) Drift in the y plane in the SDSI system

during a 2000 frame data acquisition. (C) Position map showing x,

y drift in the SDSI system during a 2000 frame data acquisition.

(TIF)

Figure S2 The photo conversion properties of Eos-FP
Actin. (A) Images taken from a 5000 frame dataset showing

stochastic photo-conversion of Eos-FP actin vesicles. Frame

number is indicated on bottom left, data are acquired by

streaming at a rate of 4–6 frames per second so total time for

dataset acquisition is 1250 seconds approximately, bar = 5 Am. (B)

Graph indicating the rate of photo conversion of an individual

Eos-Actin vesicle. Imaging conditions were identical to those used

in PALM/dSTORM data acquisition, 250 frames of data

acquired at a rate of 5 frames per second were measured of a

representative sample are shown here.

(TIF)

Figure S3 Resolution improvement using the SD-SI
system. (A) Graphs comparing the resolution of SSIM and

SDSI using an intensity profile of a 100 nm Tetraspeck fluorescent

bead. Fluorescence form the bead was excited using a 488 nm

laser, Intensity profiles of the bead were collected. Left hand graph

shows the OMX SSIM system, right hand side graph compares

raw data from the spinning disk with the resolution enhancement

in SR images generated using 3rd order SOFI. On both graphs

the full width at half maximal intensity are indicated by a line.

Data are pooled from 5 separate beads. (B) Graph comparing the

number of photo-switching events detected by QuickPALM

software in data collected by TIRF and SD. Test datasets of

64664 images of AlexaFluor647 labeled F-actin (TIRF) and

90690 pixel images of tdEos-actin in HeLa cells (SD) were

compared. (C) Bar chart showing average area reconstructed from

SOFI analysis of 100 nm Tetraspeck beads. Datasets of 200, 500,

1000, 2000, 4000, 6000, 8000 and 10000 frames are measured.

Data are pooled from 10 separate beads, error bars show standard

deviation.

(TIF)

Figure S4 (A) Widefield epifluorescent of HeLa cells labeled

with AlexaFlour555 Phalloidin. SR data was generated from a

Widefield image set using 3rd order SOFI. (B) High-resolution

region (indicated by orange box in image (A) of F-actin

bar = 1 Am. (C) Intensity profiles, through regions indicated by

yellow parenthesis in E, comparing WF resolution with the super-

resolution images generated using 3rd order SOFI.

(TIF)

Table S1 Table showing how super-resolution algo-
rithms work and any assumptions the algorithms made
about the nature of the input image data prior to data
processing.

(DOCX)

Movie S1 A simulated multiframe fluorescence micros-
copy data sets in which only a subset of fluorophores
was activated in each frame taken from Mukamel et al
[17].

(AVI)

Movie S2 A 5000 frame dataset of AlexaFluor 647
labelled actin generated using TIRF.

(AVI)

Movie S3 A 5000 frame dataset of HeLa cells transfect-
ed with Eos-Actin generated using SDSI.

(AVI)
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