36 research outputs found

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Protistan Diversity in the Arctic: A Case of Paleoclimate Shaping Modern Biodiversity?

    Get PDF
    The impact of climate on biodiversity is indisputable. Climate changes over geological time must have significantly influenced the evolution of biodiversity, ultimately leading to its present pattern. Here we consider the paleoclimate data record, inferring that present-day hot and cold environments should contain, respectively, the largest and the smallest diversity of ancestral lineages of microbial eukaryotes.We investigate this hypothesis by analyzing an original dataset of 18S rRNA gene sequences from Western Greenland in the Arctic, and data from the existing literature on 18S rRNA gene diversity in hydrothermal vent, temperate sediments, and anoxic water column communities. Unexpectedly, the community from the cold environment emerged as one of the richest observed to date in protistan species, and most diverse in ancestral lineages.This pattern is consistent with natural selection sweeps on aerobic non-psychrophilic microbial eukaryotes repeatedly caused by low temperatures and global anoxia of snowball Earth conditions. It implies that cold refuges persisted through the periods of greenhouse conditions, which agrees with some, although not all, current views on the extent of the past global cooling and warming events. We therefore identify cold environments as promising targets for microbial discovery

    Tectonic underplating of trench sediments beneath magmatic arcs: the central California example

    No full text
    We summarize the post Late Cretaceous regional tectonic evolution of the central California Coast Ranges, west of the San Andreas fault system. The Monterey terrane of North American origin was laterally transferred to the Pacific plate via the San Andreas fault. The Monterey terrane is an assembly of three tectonic units, Salinia, Nacimiento and Sierra de Salinas blocks, two of which have been previously identified as separate terranes. These blocks are separated by two regionally important thrust faults: the Sur fault as well as the Salinas shear zone. Based on thermobarometric and thermochronologic constraints and the existence of a common younger cover sequence, these blocks were juxtaposed together after the latest Cretaceous. The Salinian assemblage represents a crustal section through the continental interior side of the Mesozoic California arc and formed during the Late Cretaceous, primarily during a regionally significant magmatic flare-up between 95 and 80 Ma. In the Santa Lucia Range, parts of the arc are exposed to palaeo-depths in excess of 30 km. The Nacimiento and Sierra de Salinas assemblages comprise basement rocks representing Late Cretaceous variants of the Franciscan Complex and are interpreted to be correlative. They represent the lower plate of a regionally important thrust system; the upper plate is the Salinian assemblage, whereas the Sur and Salinas faults are local exposures of the structure. We concur with previous estimates of 150 to 180 km of shortening during a brief time span (3 cm/yr. This fault system corresponds to the megathrust of the Farallon subduction beneath North America during the early stages of the regionally extensive episode of shallow subduction (Laramide orogeny). As a result, trench sediment was thrust under North America and tectonically underplated to the lower crust of North America. The Salinas shear zone, in particular, is a ductile expression of shallow subduction; thermobarometry in the upper plate, lower plate and the shear zone itself indicate that this is the fossil subduction megathrust originating at depths of ∌35 km. The entire system collapsed extensionally soon after the trench sediment was underthrust, possibly because of the lack of strength of the lower plate. Arc magmatism in the upper plate ceased at the onset of underplating. This regional example illustrates the significance of tectonic underplating in shallow subduction systems. Accretion-related trench sediment was shuffled from the trench to the sub-arc region of the upper plate, but not recycled into the mantle. This process requires that the subduction megathrust be located solely within the North American crust. This geometry requires a sudden migration of the subduction interface toward the arc and may apply to other regional examples, including the modern shallow subduction of the Cocos plate beneath southern Mexico. The tectonically underplated trench sediment undergoes regional, Barrovian metamorphism, after initially following a high-pressure/low-temperature path. Moreover, the shear zone marking the fossil intracrustal megathrust was subject to granulite-facies metamorphism and limited partial melting

    Sm-nd Evidence For The Age And Origin Of A Mississippi Valley Type Ore Deposit

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62602/1/344054a0.pd

    Sm–Nd evidence for the age and origin of a Mississippi Valley Type ore deposit

    No full text
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62602/1/344054a0.pd

    Thermochronology of the Cornubian batholith in southwest England: Implications for pluton emplacement and protracted hydrothermal mineralization

    Full text link
    The metalliferous ore deposits of southwest England are associated with biotite-muscovite granites that intruded upper Paleozoic sediments and volcanic rocks at the end of the Hercynian Orogeny. The hydrothermal mineralization can be subdivided into four stages: 1. (1) exoskarns2. (2) high-temperature tin and tungsten oxide-bearing sheeted greisen bordered veins and Sn-bearing tourmaline veins and breccias3. (3) polymetallic quartz-tourmaline-chlorite-sulfide-fluorite-bearing fissure veins, which represent the main episode of economic mineralization4. (4) late-stage, low-temperature polymetallic fluorite veins. U-Pb dating of monazite and xenotime and 40Ar/39Ar dating of muscovite were used to determine emplacement ages and cooling times for individual plutons within the Cornubian batholith, as well as separate intrusive phases within the plutons. In addition, 40Ar/39Ar ages from hornblende and secondary muscovite and Sm-Nd isochron ages from fluorite were employed to determine the relationship between pluton emplacement and different stages of mineralization. The U-Pb ages indicate that granite magmatism was protracted from ~300 Ma down to ~275 Ma with no evidence of a major hiatus. There is no systematic relation between the age of a pluton and its location within the batholith. The U-Pb ages for separate granite phases within a single pluton are resolvable and indicate that magma emplacement within individual plutons occurred over periods of as much as 4.5 myrs. Felsic porphyry dike emplacement was coeval with plutonism, but continued to ~270 Ma. The geochronologic data suggest that the Cornubian batholith originated from repeated melting events over 30 myrs and was formed by a series of small coalescing granitic bodies. Cooling rates of the main plutons are unrelated to emplacement age, but decrease from the southwest to the northeast from ~210[deg]C myr-1 to ~60[deg]C myr-1 with a mean of 100[deg]C myr-1. These slow cooling rates appear to reflect the addition of heat from multiple intrusive episodes. The mineralization history is distinct for each pluton and ranges from coeval with, to up to 40 myrs younger than the cooling age for the host pluton. Stage 2 mineralization is broadly synchronous with the emplacement of granite magmas, is dominated by fluids expelled during crystallization, and may be repeated by the emplacement of younger magmas within the same pluton. Sm-Nd isochrons for fluorite from stage 3 polymetallic mineralization give ages of 259 +/- 7, 266 +/- 3 and 267 +/- 12 Ma, postdating stage 2 mineralization by up to 25 myrs within the same deposit. The similarity in age of the main polymetallic mineralization hosted by the oldest and youngest plutons, suggests that this stage of mineralization is unlikely to be related to hydrothermal circulation driven by the emplacement and cooling of the host granite. The mineralization is more likely the product of regional hydrothermal circulation driven by heat from the emplacement and crystallization of younger buried pulses of magma.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30898/1/0000567.pd
    corecore