104 research outputs found

    Comparison of a Head Mounted Impact Measurement Device to the Hybrid III Anthropomorphic Testing Device in a Controlled Laboratory Setting

    Get PDF
    Background: Reports estimate that 1.6 to 3.8 million cases of concussion occur in sports and recreation each year in the United States. Despite continued efforts to reduce the occurrence of concussion, the rate of diagnosis continues to increase. The mechanisms of concussion are thought to involve linear and rotational head accelerations and velocities. One method of quantifying the kinematics experienced during sport participation is to place measurement devices into the athlete’s helmet or directly on the athlete’s head. Purpose: The purpose of this research to determine the accuracy of a head mounted device for measuring the head accelerations experienced by the wearer. This will be accomplished by identifying the error in Peak Linear Acceleration (PLA), Peak Rotational Acceleration (PRA) and Peak Rotational Velocity (PRV) of the device. Study Design: Laboratory study. Methods: A helmeted Hybrid III 50th percentile male headform was impacted via a pneumatic ram from the front, side, rear, front oblique and rear oblique at speeds from 1.5 to 5 m/s. The X2 Biosystems xPatchÂź (Seattle, WA) sensor was placed on the headform’s right side at the approximate location of the mastoid process. Measures of PLA, PRA, PRV from the xPatch Âź and Hybrid III were analyzed for Root Mean Square Error (RMSE), and Absolute and Relative Error (AE, RE). Result: Seventy-six impacts were analyzed. All measures of correlation, fixed through the origin, were found to be strong: PLA R2 =0.967 p \u3c 0.01, PRA R2 =0.933 p \u3c 0.01, PRV R2 =0.999 p \u3c 0.00. PLA RMSE was 34%, RE 31.0% ± 14.0, and AE 31.1% ± 13.7. PRA RMSE was 23.4%, RE -6.7 ± 22.4 and AE 18.9% ± 13.8. PRV RMSE was 2.2%, RE 0.1 ± 2.2, and AE 1.8 ± 1.3. Conclusion: Without including corrections for effect of skin artifact, the xPatchÂź produces measurements highly correlated with the gold standard yet above the average error of testing devices in both PLA and PRA, but a low error in PRV. PLA measures from the xPatchÂź system demonstrated a high level of correlation with the PLA data from the Hybrid III mounted data collection system. Level of Evidence:

    Inter-Rater Agreement and Validity of a Tackling Performance Assessment Scale in Youth American Football

    Get PDF
    Background: Long term neurologic injury and concussion have been identified as risks from participation in American football. Altering tackling form has been recommended to reduce the risk of neurologic injury caused by head accelerations when tackling. The purpose of this research is to determine the inter-rater agreement and validity of the Qualitative Youth Tackling System (QYTS), a six-item feedback scale to correct tackling form, when utilized by novice and expert raters. Hypothesis: Experienced raters will have higher levels of agreement with each other and with motion capture when compared to novice raters. Methods: Both novice and experienced raters viewed video of youth athletes (ages 9-13) tackling a dummy in a laboratory setting along. The raters identified successful performance according to a binary rating scale for each component. Analysis of both the raters\u27 agreement with each other and with an objective motion capture measure were completed. Results: Fliess\u27 Kappa measures between all raters were found to be moderate for head placement (k=.48), fair for cervical extension (k=.38), trunk inclination (k=.37), shoulder extension (k=.27) and step length (k=.29), and there was no agreement for pelvic height (k=.-16). When compared to the dichotomized validation measures of each of the five components provided by the motion capture system the average Cohen\u27s Kappa agreement was substantial for pelvic height (k=.63), fair for step length (k=.34), cervical extension (k=.40), trunk inclination (k=.35), and slight for shoulder extension (k=.16). The experienced raters out-performed the novice raters in all categories. Conclusion: The results of this study indicate that skilled raters are better able to identify the movement patterns included in the QYTS when compared to a validation measure as well have higher rates of interrater agreement than novice raters. Level of Evidence: 3

    The Effect of Tackling Training on Head Accelerations in Youth American Football

    Get PDF
    Background: Many organizations have introduced frameworks to reduce the incidence of football related concussions through proper equipment fitting, coach education, and alteration of tackling technique. Purpose: The purpose of this study was to examine the effects of training in a vertical, head up tackling style on the number of head accelerations experienced while tackling in a controlled laboratory situation. The authors hypothesized that training in a head up tackling technique would reduce the severity of head acceleration experienced by participants. Design: Controlled Laboratory Study. Methods: Twenty-four participants (11.5 ± 0.6 years old, 60.5 ± 2.2 in, 110 ± 18.4 lbs.) with previous playing experience completed a one-day training session on tackling technique utilizing a tackling dummy. A subgroup of these participants completed an additional two days of training with a 48 hour retention test. Head accelerations were analyzed at baseline and end of training. Feedback consisted of verbal feedback utilizing the Qualitative Youth Tackling Scale (QYTS) and video tackling playback. Results: A significant reduction in the number of peak linear head accelerations over 10 g and peak rotational head accelerations over 1885 deg/sÂČ were found in dummy tackling after training in both the one day and three day training regimens. A significant change in QYTS tackling form score was found between pretest and post-test (p=0.004). Participants with larger steps had a 2.28, 4.42 and 4.14 increased odds ratio of sustaining head accelerations over 10, 15 and 20 g respectively. Conclusions: Training in a vertical, head up tackling style decreased the number of head accelerations over threshold values sustained while tackling; decreased step length may be the driving factor in the effectiveness of this tackling form. Level of Evidence: Level 3

    Science-based intensive agriculture: Sustainability, food security, and the role of technology

    Get PDF
    Sustainable agriculture describes crop management approaches that address the interdependent goals of increasing or at least maintaining yield while protecting the environment, conserving natural resources, and slowing climate change. Numerous authors have espoused limiting synthetic fertilizer and pesticides and promoting organic agriculture (Lechenet et al., 2014; Martinez-Alcantara et al., 2016; Muller at al. 2017), less meat consumption (West et al., 2014; Poore and Nemecek, 2018; Springmann et al., 2018), or combinations of these strategies as viable solutions to achieve those goals, thereby improving agricultural sustainability

    Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    Full text link
    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.Comment: to be published in At. Data Nucl. Data Table

    Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment

    Get PDF
    BackgroundHuman papillomavirus vaccines prevent human papillomavirus infection and cervical precancers. The impact of vaccinating women with a current infection or after treatment for an human papillomavirus-associated lesion is not fully understood.ObjectivesTo determine whether human papillomavirus-16/18 vaccination influences the outcome of infections present at vaccination and the rate of infection and disease after treatment of lesions.Study DesignWe included 1711 women (18−25 years) with carcinogenic human papillomavirus infection and 311 women of similar age who underwent treatment for cervical precancer and who participated in a community-based trial of the AS04-adjuvanted human papillomavirus-16/18 virus-like particle vaccine. Participants were randomized (human papillomavirus or hepatitis A vaccine) and offered 3 vaccinations over 6 months. Follow-up included annual visits (more frequently if clinically indicated), referral to colposcopy of high-grade and persistent low-grade lesions, treatment by loop electrosurgical excisional procedure when clinically indicated, and cytologic and virologic follow-up after treatment. Among women with human papillomavirus infection at the time of vaccination, we considered type-specific viral clearance, and development of cytologic (squamous intraepithelial lesions) and histologic (cervical intraepithelial neoplasia) lesions. Among treated women, we considered single-time and persistent human papillomavirus infection, squamous intraepithelial lesions, and cervical intraepithelial neoplasia 2 or greater. Outcomes associated with infections absent before treatment also were evaluated. Infection-level analyses were performed and vaccine efficacy estimated.ResultsMedian follow-up was 56.7 months (women with human papillomavirus infection) and 27.3 months (treated women). There was no evidence of vaccine efficacy to increase clearance of human papillomavirus infections or decrease incidence of cytologic/histologic abnormalities associated with human papillomavirus types present at enrollment. Vaccine efficacy for human papillomavirus 16/18 clearance and against human papillomavirus 16/18 progression from infection to cervical intraepithelial neoplasia 2 or greater were −5.4% (95% confidence interval −19,10) and 0.3% (95% confidence interval −69,41), respectively. Among treated women, 34.1% had oncogenic infection and 1.6% had cervical intraepithelial neoplasia 2 or greater detected after treatment, respectively, and of these 69.8% and 20.0% were the result of new infections. We observed no significant effect of vaccination on rates of infection/lesions after treatment. Vaccine efficacy estimates for human papillomavirus 16/18 associated persistent infection and cervical intraepithelial neoplasia 2 or greater after treatment were 34.7% (95% confidence interval −131, 82) and −211% (95% confidence interval −2901, 68), respectively. We observed evidence for a partial and nonsignificant protective effect of vaccination against new infections absent before treatment. For incident human papillomavirus 16/18, human papillomavirus 31/33/45, and oncogenic human papillomavirus infections post-treatment, vaccine efficacy estimates were 57.9% (95% confidence interval −43, 88), 72.9% (95% confidence interval 29, 90), and 36.7% (95% confidence interval 1.5, 59), respectively.ConclusionWe find no evidence for a vaccine effect on the fate of detectable human papillomavirus infections. We show that vaccination does not protect against infections/lesions after treatment. Evaluation of vaccine protection against new infections after treatment and resultant lesions warrants further consideration in future studies

    Taking the Measure of the Universe: Precision Astrometry with SIM PlanetQuest

    Get PDF
    Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument that delivers parallaxes at about 4 microarcsec on targets as faint as V = 20, differential accuracy of 0.6 microarcsec on bright targets, and with flexible scheduling. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed all of the enabling technologies needed for the flight instrument in 2005. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. SIM will search for planets with masses as small as an Earth orbiting in the `habitable zone' around the nearest stars using differential astrometry, and could discover many dozen if Earth-like planets are common. It will be the most capable instrument for detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion measurements, SIM will probe the galactic mass distribution and the formation and evolution of the Galactic halo. (abridged)Comment: 54 pages, 28 figures, uses emulateapj. Submitted to PAS

    Evidence for single-dose protection by the bivalent HPV vaccine-Review of the Costa Rica HPV vaccine trial and future research studies.

    Get PDF
    The Costa Rica Vaccine Trial (CVT), a phase III randomized clinical trial, provided the initial data that one dose of the HPV vaccine could provide durable protection against HPV infection. Although the study design was to administer all participants three doses of HPV or control vaccine, 20% of women did not receive the three-dose regimens, mostly due to involuntary reasons unrelated to vaccination. In 2011, we reported that a single dose of the bivalent HPV vaccine could be as efficacious as three doses of the vaccine using the endpoint of persistent HPV infection accumulated over the first four years of the trial; findings independently confirmed in the GSK-sponsored PATRICIA trial. Antibody levels after one dose, although lower than levels elicited by three doses, were 9-times higher than levels elicited by natural infection. Importantly, levels remained essentially constant over at least seven years, suggesting that the observed protection provided by a single dose might be durable. Much work has been done to assure these non-randomized findings are valid. Yet, the group of recipients who received one dose of the bivalent HPV vaccine in the CVT and PATRICIA trials was small and not randomly selected nor blinded to the number of doses received. The next phase of research is to conduct a formal randomized, controlled trial to evaluate the protection afforded by a single dose of HPV vaccine. Complementary studies are in progress to bridge our findings to other populations, and to further document the long-term durability of antibody response following a single dose

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy as it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and other space-based instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA's first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed: ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or intermediate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help make progress in the different areas. New research avenues that LISA itself, or its joint exploitation with studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe
    • 

    corecore