37 research outputs found

    Detailed 3D Fault Representations for the 2019 Ridgecrest, California, Earthquake Sequence

    Get PDF
    We present new 3D source fault representations for the 2019 M 6.4 and M 7.1 Ridgecrest earthquake sequence. These representations are based on relocated hypocenter catalogs expanded by template matching and focal mechanisms for M 4 and larger events. Following the approach of Riesner et al. (2017), we generate reproducible 3D fault geometries by integrating hypocenter, nodal plane, and surface rupture trace constraints. We used the southwest–northeast‐striking nodal plane of the 4 July 2019 M 6.4 event to constrain the initial representation of the southern Little Lake fault (SLLF), both in terms of location and orientation. The eastern Little Lake fault (ELLF) was constrained by the 5 July 2019 M 7.1 hypocenter and nodal planes of M 4 and larger aftershocks aligned with the main trend of the fault. The approach follows a defined workflow that assigns weights to a variety of geometric constraints. These main constraints have a high weight relative to that of individual hypocenters, ensuring that small aftershocks are applied as weaker constraints. The resulting fault planes can be considered averages of the hypocentral locations respecting nodal plane orientations. For the final representation we added detailed, field‐mapped rupture traces as strong constraints. The resulting fault representations are generally smooth but nonplanar and dip steeply. The SLLF and ELLF intersect at nearly right angles and cross on another. The ELLF representation is truncated at the Airport Lake fault to the north and the Garlock fault to the south, consistent with the aftershock pattern. The terminations of the SLLF representation are controlled by aftershock distribution. These new 3D fault representations are available as triangulated surface representations, and are being added to a Community Fault Model (CFM; Plesch et al., 2007, 2019; Nicholson et al., 2019) for wider use and to derived products such as a CFM trace map and viewer (Su et al., 2019)

    Detailed 3D Fault Representations for the 2019 Ridgecrest, California, Earthquake Sequence

    Get PDF
    We present new 3D source fault representations for the 2019 M 6.4 and M 7.1 Ridgecrest earthquake sequence. These representations are based on relocated hypocenter catalogs expanded by template matching and focal mechanisms for M 4 and larger events. Following the approach of Riesner et al. (2017), we generate reproducible 3D fault geometries by integrating hypocenter, nodal plane, and surface rupture trace constraints. We used the southwest–northeast‐striking nodal plane of the 4 July 2019 M 6.4 event to constrain the initial representation of the southern Little Lake fault (SLLF), both in terms of location and orientation. The eastern Little Lake fault (ELLF) was constrained by the 5 July 2019 M 7.1 hypocenter and nodal planes of M 4 and larger aftershocks aligned with the main trend of the fault. The approach follows a defined workflow that assigns weights to a variety of geometric constraints. These main constraints have a high weight relative to that of individual hypocenters, ensuring that small aftershocks are applied as weaker constraints. The resulting fault planes can be considered averages of the hypocentral locations respecting nodal plane orientations. For the final representation we added detailed, field‐mapped rupture traces as strong constraints. The resulting fault representations are generally smooth but nonplanar and dip steeply. The SLLF and ELLF intersect at nearly right angles and cross on another. The ELLF representation is truncated at the Airport Lake fault to the north and the Garlock fault to the south, consistent with the aftershock pattern. The terminations of the SLLF representation are controlled by aftershock distribution. These new 3D fault representations are available as triangulated surface representations, and are being added to a Community Fault Model (CFM; Plesch et al., 2007, 2019; Nicholson et al., 2019) for wider use and to derived products such as a CFM trace map and viewer (Su et al., 2019)

    The 2015 Fillmore Earthquake Swarm and Possible Crustal Deformation Mechanisms near the Bottom of the Eastern Ventura Basin, California

    Get PDF
    The 2015 Fillmore swarm occurred about 6 km west of the city of Fillmore in Ventura, California, and was located beneath the eastern part of the actively subsiding Ventura basin at depths from 11.8 to 13.8 km, similar to two previous swarms in the area. Template‐matching event detection showed that it started on 5 July 2015 at 2:21 UTC with an M ∼1.0 earthquake. The swarm exhibited unusual episodic spatial and temporal migrations and unusual diversity in the nodal planes of the focal mechanisms as compared to the simple hypocenter‐defined plane. It was also noteworthy because it consisted of >1400 events of M ≥ 0.0, with M 2.8 being the largest event. We suggest that fluids released by metamorphic dehydration processes, migration of fluids along a detachment zone, and cascading asperity failures caused this prolific earthquake swarm, but other mechanisms (such as simple mainshock–aftershock stress triggering or a regional aseismic creep event) are less likely. Dilatant strengthening may be a mechanism that causes the temporal decay of the swarm as pore‐pressure drop increased the effective normal stress, and counteracted the instability driving the swarm

    The 2015 Fillmore Earthquake Swarm and Possible Crustal Deformation Mechanisms near the Bottom of the Eastern Ventura Basin, California

    Get PDF
    The 2015 Fillmore swarm occurred about 6 km west of the city of Fillmore in Ventura, California, and was located beneath the eastern part of the actively subsiding Ventura basin at depths from 11.8 to 13.8 km, similar to two previous swarms in the area. Template‐matching event detection showed that it started on 5 July 2015 at 2:21 UTC with an M ∼1.0 earthquake. The swarm exhibited unusual episodic spatial and temporal migrations and unusual diversity in the nodal planes of the focal mechanisms as compared to the simple hypocenter‐defined plane. It was also noteworthy because it consisted of >1400 events of M ≥ 0.0, with M 2.8 being the largest event. We suggest that fluids released by metamorphic dehydration processes, migration of fluids along a detachment zone, and cascading asperity failures caused this prolific earthquake swarm, but other mechanisms (such as simple mainshock–aftershock stress triggering or a regional aseismic creep event) are less likely. Dilatant strengthening may be a mechanism that causes the temporal decay of the swarm as pore‐pressure drop increased the effective normal stress, and counteracted the instability driving the swarm

    Three-dimensional seismic velocity structure in the Sichuan basin, China

    No full text
    We present a new three‐dimensional velocity model of the crust in the eastern margin of the Tibetan Plateau. The model describes the velocity structure of the Sichuan basin and surrounding thrust belts. The model consists of 3‐D surfaces representing major geologic unit contacts and faults and is parameterized with Vp velocity‐depth functions calibrated using sonic logs. The model incorporates data from 1166 oil wells, industry isopach maps, geological maps, and a digital elevation model. The geological surfaces were modeled based on structure contour maps for various units from oil wells and seismic reflection profiles. These surfaces include base Quaternary, Mesozoic, Paleozoic, and Proterozoic horizons. The horizons locally exhibit major offsets that are compatible with the locations and displacements of important faults systems. This layered, upper crustal 3‐D model extends down to 10–15 km depth and illustrates lateral and vertical variations of velocity that reflect the complex evolution of tectonics and sedimentation in the basin. The model also incorporates 3‐D descriptions of Vs and density for sediments that are obtained from empirical relationships with Vp using direct measurements of these properties in borehole logs. To illustrate the impact of our basin model on earthquake hazards assessment, we use it to calculate ground motions and compare these with observations for the 2013 Lushan earthquake. The result demonstrates the effects of basin amplification in the western Sichuan basin. The Sichuan CVM model is intended to facilitate fault systems analysis, strong ground motion prediction, and earthquake hazards assessment for the densely populated Sichuan region.Published versio

    Structural Architecture of the Western Transverse Ranges and Potential for Large Earthquakes - Trishear Forward Models

    No full text
    Southern California Earthquake Center Annual Meeting, 9-13 September 2017, Palm SpringsFold-and-thrust belts evolve over time, can produce large-scale faults and potentially accommodate large magnitude earthquakes. The thrust fronts of these structures typically form large fold structures in their hanging walls, and they tend to propagate forward over time to form new thrust fronts. In the Santa Barbara and Ventura region of the Western Transverse Ranges (WTR) of southern California, the Pitas Point thrust isinterpreted as the current thrust front structure, and spatially stable back thrusts accommodate deformation in the hanging wall block of the thrust sheet (More Ranch fault, Rincon Creek fault, other faults). We interpret the nearly continuous, overturned Tertiary stratigraphy of the Santa Ynez Mountains as a large anticlinorium that formed as the first thrust front over the (mostly) blind San Cayetano thrust, and that the thrust front propagated south with time to the Red Mountain fault and eventually to the currently active thrust front, the southward-vergent Pitas Point-Ventura fault. Our interpretation is based on combining various sources of data and previous models suggested by others. We used the observed rate of subsidence in the basin, assuming it represents the regional rate, shortening rates from different studies and from our own estimates, and finally, we compared these to the regional rate of uplift in the hanging wall where folding has ceased in order make an estimate for the dip of the underlying “flat” or decollement. Based on these rates and assumption we estimate that the deep fault dips north at around 20º. This result seems to match previous seismologic observations. To test our interpretations of the evolution and structure of the WTR, we used Trishear forward modeling. We compared our results to the observed geology and the Trishear models are a good first-order match. While our solution is non-unique, it is consistent with all of the currently available data. We believe that this model resolves much of the ongoing debate regarding the dip direction of the primary structure at depth, and modeling of multiple cross-sections argues that all of the observed deformation can be explained by an evolved fold and thrust belt, which includes a regionally extensive decollement underlying the observed thrust fronts. In addition, our model predicts the loading signal to be north of the Santa Ynez Mountain range. This prediction provides an opportunity to test the model trough geodetic observationsPeer Reviewe
    corecore