279 research outputs found

    A review of volatiles in the Martian interior

    Get PDF
    Multiple observations from missions to Mars have revealed compelling evidence for a volatile-rich Martian crust. A leading theory contends that eruption of basaltic magmas was the ultimate mechanism of transfer of volatiles from the mantle toward the surface after an initial outgassing related to the crystallization of a magma ocean. However, the concentrations of volatile species in ascending magmas and in their mantle source regions are highly uncertain. This work and this special issue of Meteoritics & Planetary Science summarize the key findings of the workshop on Volatiles in the Martian Interior (Nov. 3–4, 2014), the primary open questions related to volatiles in Martian magmas and their source regions, and the suggestions of the community at the workshop to address these open questions

    The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites

    Get PDF
    In the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), the amplitudes and phases of the annual, semi-annual and quasi-biennial variation in stratospheric and lower mesospheric water were compared using 30 data sets from 13 different satellite instruments. These comparisons aimed to provide a comprehensive overview of the typical uncertainties in the observational database which can be considered in subsequent observational and modelling studies. For the amplitudes, a good agreement of their latitude and altitude distribution was found. Quantitatively there were differences in particular at high latitudes, close to the tropopause and in the lower mesosphere. In these regions, the standard deviation over all data sets typically exceeded 0.2β€―ppmv for the annual variation and 0.1β€―ppmv for the semi-annual and quasi-biennial variation. For the phase, larger differences between the data sets were found in the lower mesosphere. Generally the smallest phase uncertainties can be observed in regions where the amplitude of the variability is large. The standard deviations of the phases for all data sets were typically smaller than a month for the annual and semi-annual variation and smaller than 5 months for the quasi-biennial variation. The amplitude and phase differences among the data sets are caused by a combination of factors. In general, differences in the temporal variation of systematic errors and in the observational sampling play a dominant role. In addition, differences in the vertical resolution of the data, the considered time periods and influences of clouds, aerosols as well as non-local thermodynamic equilibrium (NLTE) effects cause differences between the individual data sets

    The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records

    Get PDF
    Satellite data records of stratospheric water vapour have been compared to balloon-borne frost point hygrometer (FP) profiles that are coincident in space and time. The satellite data records of 15 different instruments cover water vapour data available from January 2000 through December 2016. The hygrometer data are from 27 stations all over the world in the same period. For the comparison, real or constructed averaging kernels have been applied to the hygrometer profiles to adjust them to the measurement characteristics of the satellite instruments. For bias evaluation, we have compared satellite profiles averaged over the available temporal coverage to the means of coincident FP profiles for individual stations. For drift determinations, we analysed time series of relative differences between spatiotemporally coincident satellite and hygrometer profiles at individual stations. In a synopsis we have also calculated the mean biases and drifts (and their respective uncertainties) for each satellite record over all applicable hygrometer stations in three altitude ranges (10–30 hPa, 30–100 hPa, and 100 hPa to tropopause). Most of the satellite data have biases <10 % and average drifts <1 % yrβˆ’1 in at least one of the respective altitude ranges. Virtually all biases are significant in the sense that their uncertainty range in terms of twice the standard error of the mean does not include zero. Statistically significant drifts (95 % confidence) are detected for 35 % of the β‰ˆβ€‰1200 time series of relative differences between satellites and hygrometers

    Exocomets from a Solar System Perspective

    Get PDF
    Exocomets are small bodies releasing gas and dust which orbit stars other than the Sun. Their existence was first inferred from the detection of variable absorption features in stellar spectra in the late 1980s using spectroscopy. More recently, they have been detected through photometric transits from space, and through far-IR/mm gas emission within debris disks. As (exo)comets are considered to contain the most pristine material accessible in stellar systems, they hold the potential to give us information about early stage formation and evolution conditions of extra Solar Systems. In the Solar System, comets carry the physical and chemical memory of the protoplanetary disk environment where they formed, providing relevant information on processes in the primordial solar nebula. The aim of this paper is to compare essential compositional properties between Solar System comets and exocomets. The paper aims to highlight commonalities and to discuss differences which may aid the communication between the involved research communities and perhaps also avoid misconceptions. Exocomets likely vary in their composition depending on their formation environment like Solar System comets do, and since exocomets are not resolved spatially, they pose a challenge when comparing them to high fidelity observations of Solar System comets. Observations of gas around main sequence stars, spectroscopic observations of "polluted" white dwarf atmospheres and spectroscopic observations of transiting exocomets suggest that exocomets may show compositional similarities with Solar System comets. The recent interstellar visitor 2I/Borisov showed gas, dust and nuclear properties similar to that of Solar System comets. This raises the tantalising prospect that observations of interstellar comets may help bridge the fields of exocomet and Solar System comets.Comment: 25 pages, 3 figures. To be published in PASP. This paper is the product of a workshop at the Lorentz Centre in Leiden, the Netherland

    Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles

    Get PDF
    Psychological and neuroscience approaches have promoted much progress in elucidating the cognitive and neural mechanisms that underlie phenomenal visual awareness during the last decades. In this article, we provide an overview of the latest research investigating important phenomena in conscious and unconscious vision. We identify general principles to characterize conscious and unconscious visual perception, which may serve as important building blocks for a unified model to explain the plethora of findings. We argue that in particular the integration of principles from both conscious and unconscious vision is advantageous and provides critical constraints for developing adequate theoretical models. Based on the principles identified in our review, we outline essential components of a unified model of conscious and unconscious visual perception. We propose that awareness refers to consolidated visual representations, which are accessible to the entire brain and therefore globally available. However, visual awareness not only depends on consolidation within the visual system, but is additionally the result of a post-sensory gating process, which is mediated by higher-level cognitive control mechanisms. We further propose that amplification of visual representations by attentional sensitization is not exclusive to the domain of conscious perception, but also applies to visual stimuli, which remain unconscious. Conscious and unconscious processing modes are highly interdependent with influences in both directions. We therefore argue that exactly this interdependence renders a unified model of conscious and unconscious visual perception valuable. Computational modeling jointly with focused experimental research could lead to a better understanding of the plethora of empirical phenomena in consciousness research

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    The Protein Model Portal

    Get PDF
    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploration of the protein structure space. One of the challenges in using model information effectively has been to access all models available for a specific protein in heterogeneous formats at different sites using various incompatible accession code systems. Often, structure models for hundreds of proteins can be derived from a given experimentally determined structure, using a variety of established methods. This has been done by all of the PSI centers, and by various independent modeling groups. The goal of the Protein Model Portal (PMP) is to provide a single portal which gives access to the various models that can be leveraged from PSI targets and other experimental protein structures. A single interface allows all existing pre-computed models across these various sites to be queried simultaneously, and provides links to interactive services for template selection, target-template alignment, model building, and quality assessment. The current release of the portal consists of 7.6Β million model structures provided by different partner resources (CSMP, JCSG, MCSG, NESG, NYSGXRC, JCMM, ModBase, SWISS-MODEL Repository). The PMP is available at http://www.proteinmodelportal.org and from the PSI Structural Genomics Knowledgebase

    Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing

    Get PDF
    Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberrations that are occurring in each tumor. Because our understanding of PAC tumorigenesis is limited, evaluation of separate cases may reveal aberrations, that are less common but may provide relevant information on the disease, or that may represent viable therapeutic targets for the patient. We used next generation sequencing to assess global somatic events across 3 PAC patients to characterize each patient and to identify potential targets. This study is the first to report whole genome sequencing (WGS) findings in paired tumor/normal samples collected from 3 separate PAC patients. We generated on average 132 billion mappable bases across all patients using WGS, and identified 142 somatic coding events including point mutations, insertion/deletions, and chromosomal copy number variants. We did not identify any significant somatic translocation events. We also performed RNA sequencing on 2 of these patients' tumors for which tumor RNA was available to evaluate expression changes that may be associated with somatic events, and generated over 100 million mapped reads for each patient. We further performed pathway analysis of all sequencing data to identify processes that may be the most heavily impacted from somatic and expression alterations. As expected, the KRAS signaling pathway was the most heavily impacted pathway (P<0.05), along with tumor-stroma interactions and tumor suppressive pathways. While sequencing of more patients is needed, the high resolution genomic and transcriptomic information we have acquired here provides valuable information on the molecular composition of PAC and helps to establish a foundation for improved therapeutic selection

    An Experimental Analysis Of the Demand For Payday Loans

    Get PDF
    The payday loan industry is one of the fastest growing segments of the consumer financial services market in the United States. We design an environment similar to the one that payday loan customers face and then conduct a laboratory experiment to examine what effect, if any, the existence of payday loans has on individuals\u27 abilities to manage and to survive financial setbacks. Our primary objective is to examine whether access to payday loans improves or worsens the likelihood of financial survival in our experiment. We also test the degree to which people\u27s use of payday loans affects their ability to survive financially. We find that payday loans help the subjects to absorb expenditure shocks and therefore survive financially. However, subjects whose demand for payday loans exceeds a certain threshold level are at a greater risk than a corresponding subject in the treatment in which payday loans do not exist
    • …
    corecore