237 research outputs found

    Two-Center Interference in p-H2 Electron-Transfer Collisions

    Get PDF
    We report on measurements of transfer excitation in collisions of 0.3-1.3 MeV protons with spatially oriented H2 molecules. Evidences of two center interference are found in the angular distribution of the molecule after a transfer excitation process and directly in the projectile angular scattering distributions. These features can be explained in a way which is analogous to that for the interferences in Young\u27s classical double slit experiment: The fast projectiles preferentially capture electrons close to either of the molecular nuclei, and thereby they change their momenta and de Broglie wavelengths. The waves emerging from the two \u27slits\u27 of the molecule interfere yielding the observed interference structure

    Evidence of Wave-Particle Duality for Single Fast Hydrogen Atoms

    Get PDF
    We report the direct observation of interference effects in a Young\u27s double-slit experiment where the interfering waves are two spatially separated components of the de Broglie wave of single 1.3 MeV hydrogen atoms formed close to either target nucleus in H++H2 electron-transfer collisions. Quantum interference strongly influences the results even though the hydrogen atoms have a de Broglie wavelength, λdB, as small as 25 fm

    Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome

    Get PDF
    Extracellular vesicles (EVs) mediate cell-to-cell communication by delivering or displaying macromolecules to their recipient cells. While certain broad-spectrum EV effects reflect their protein cargo composition, others have been attributed to individual EV-loaded molecules such as specific miRNAs. In this work, we have investigated the contents of vesicular cargo using small RNA sequencing of cells and EVs from HEK293T, RD4, C2C12, Neuro2a and C17.2. The majority of RNA content in EVs (49-96%) corresponded to rRNA-, coding-and tRNA fragments, corroborating with our proteomic analysis of HEK293T and C2C12 EVs which showed an enrichment of ribosome and translation-related proteins. On the other hand, the overall proportion of vesicular small RNA was relatively low and variable (2-39%) and mostly comprised of miRNAs and sequences mapping to piRNA loci. Importantly, this is one of the few studies, which systematically links vesicular RNA and protein cargo of vesicles. Our data is particularly useful for future work in unravelling the biological mechanisms underlying vesicular RNA and protein sorting and serves as an important guide in developing EVs as carriers for RNA therapeutics.Peer reviewe

    Generic multiloop methods and application to N=4 super-Yang-Mills

    Full text link
    We review some recent additions to the tool-chest of techniques for finding compact integrand representations of multiloop gauge-theory amplitudes - including non-planar contributions - applicable for N=4 super-Yang-Mills in four and higher dimensions, as well as for theories with less supersymmetry. We discuss a general organization of amplitudes in terms of purely cubic graphs, review the method of maximal cuts, as well as some special D-dimensional recursive cuts, and conclude by describing the efficient organization of amplitudes resulting from the conjectured duality between color and kinematic structures on constituent graphs.Comment: 42 pages, 18 figures, invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories", v2 minor corrections, v3 added reference

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth

    Identification of genes for normalization of real-time RT-PCR data in breast carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative real-time RT-PCR (RT-qPCR) has become a valuable molecular technique in basic and translational biomedical research, and is emerging as an equally valuable clinical tool. Correlation of inter-sample values requires data normalization, which can be accomplished by various means, the most common of which is normalization to internal, stably expressed, reference genes. Recently, such traditionally utilized reference genes as GAPDH and B2M have been found to be regulated in various circumstances in different tissues, emphasizing the need to identify genes independent of factors influencing the tissue, and that are stably expressed within the experimental milieu. In this study, we identified genes for normalization of RT-qPCR data for invasive breast cancer (IBC), with special emphasis on estrogen receptor positive (ER+) IBC, but also examined their applicability to ER- IBC, normal breast tissue and breast cancer cell lines.</p> <p>Methods</p> <p>The reference genes investigated by qRT-PCR were RPLP0, TBP, PUM1, ACTB, GUS-B, ABL1, GAPDH and B2M. Biopsies of 18 surgically-excised tissue specimens (11 ER+ IBCs, 4 ER- IBCs, 3 normal breast tissues) and 3 ER+ cell lines were examined and the data analyzed by descriptive statistics, geNorm and NormFinder. In addition, the expression of selected reference genes in laser capture microdissected ER+ IBC cells were compared with that of whole-tissue.</p> <p>Results</p> <p>A group of 3 genes, TBP, RPLP0 and PUM1, were identified for both the combined group of human tissue samples (ER+ and ER- IBC and normal breast tissue) and for the invasive cancer samples (ER+ and ER- IBC) by GeNorm, where NormFinder consistently identified PUM1 at the single best gene for all sample combinations.</p> <p>Conclusion</p> <p>The reference genes of choice when performing RT-qPCR on normal and malignant breast specimens should be either the collected group of 3 genes (TBP, RPLP0 and PUM1) employed as an average, or PUM1 as a single gene.</p

    Development of Secondary Woodland in Oak Wood Pastures Reduces the Richness of Rare Epiphytic Lichens

    Get PDF
    Wooded pastures with ancient trees were formerly abundant throughout Europe, but during the last century, grazing has largely been abandoned often resulting in dense forests. Ancient trees constitute habitat for many declining and threatened species, but the effects of secondary woodland on the biodiversity associated with these trees are largely unknown. We tested for difference in species richness, occurrence, and abundance of a set of nationally and regionally red-listed epiphytic lichens between ancient oaks located in secondary woodland and ancient oaks located in open conditions. We refined the test of the effect of secondary woodland by also including other explanatory variables. Species occurrence and abundance were modelled jointly using overdispersed zero-inflated Poisson models. The richness of the red-listed lichens on ancient oaks in secondary woodland was half of that compared with oaks growing in open conditions. The species-level analyses revealed that this was mainly the result of lower occupancy of two of the study species. The tree-level abundance of one species was also lower in secondary woodland. Potential explanations for this pattern are that the study lichens are adapted to desiccating conditions enhancing their population persistence by low competition or that open, windy conditions enhance their colonisation rate. This means that the development of secondary woodland is a threat to red-listed epiphytic lichens. We therefore suggest that woody vegetation is cleared and grazing resumed in abandoned oak pastures. Importantly, this will also benefit the vitality of the oaks

    A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic contact dermatitis is an inflammatory skin disease that affects a significant proportion of the population. This disease is caused by an adverse immune response towards chemical haptens, and leads to a substantial economic burden for society. Current test of sensitizing chemicals rely on animal experimentation. New legislations on the registration and use of chemicals within pharmaceutical and cosmetic industries have stimulated significant research efforts to develop alternative, human cell-based assays for the prediction of sensitization. The aim is to replace animal experiments with in vitro tests displaying a higher predictive power.</p> <p>Results</p> <p>We have developed a novel cell-based assay for the prediction of sensitizing chemicals. By analyzing the transcriptome of the human cell line MUTZ-3 after 24 h stimulation, using 20 different sensitizing chemicals, 20 non-sensitizing chemicals and vehicle controls, we have identified a biomarker signature of 200 genes with potent discriminatory ability. Using a Support Vector Machine for supervised classification, the prediction performance of the assay revealed an area under the ROC curve of 0.98. In addition, categorizing the chemicals according to the LLNA assay, this gene signature could also predict sensitizing potency. The identified markers are involved in biological pathways with immunological relevant functions, which can shed light on the process of human sensitization.</p> <p>Conclusions</p> <p>A gene signature predicting sensitization, using a human cell line in vitro, has been identified. This simple and robust cell-based assay has the potential to completely replace or drastically reduce the utilization of test systems based on experimental animals. Being based on human biology, the assay is proposed to be more accurate for predicting sensitization in humans, than the traditional animal-based tests.</p

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore