163 research outputs found
Simulated rhizosphere deposits induce microbial N-mining that may accelerate shrubification in the subarctic
Climate change is exposing high-latitude systems to warming and a shift towards more shrub-dominated plant communities, resulting in increased leaf-litter inputs at the soil surface, and more labile root-derived organic matter (OM) input in the soil profile. Labile OM can stimulate the mineralization of soil organic matter (SOM); a phenomenon termed âpriming.â In N-poor subarctic soils, it is hypothesized that microorganisms may âprimeâ SOM in order to acquire N (microbial N-mining). Increased leaf-litter inputs with a high C/N ratio might further exacerbate microbial N demand, and increase the susceptibility of N-poor soils to N-mining. We investigated the N-control of SOM mineralization by amending soils from climate changeâsimulation treatments in the subarctic (+1.1°C warming, birch litter addition, willow litter addition, and fungal sporocarp addition) with labile OM either in the form of glucose (labile C; equivalent to 400 ”g C/g fresh [fwt] soil) or alanine (labile C + N; equivalent to 400 ”g C and 157 ”g N/g fwt soil), to simulate rhizosphere inputs. Surprisingly, we found that despite 5 yr of simulated climate change treatments, there were no significant effects of the field-treatments on microbial process rates, community structure or responses to labile OM. Glucose primed the mineralization of both C and N from SOM, but gross mineralization of N was stimulated more than that of C, suggesting that microbial SOM use increased in magnitude and shifted to components richer in N (i.e., selective microbial N-mining). The addition of alanine also resulted in priming of both C and N mineralization, but the N mineralization stimulated by alanine was greater than that stimulated by glucose, indicating strong N-mining even when a source of labile OM including N was supplied. Microbial carbon use efficiency was reduced in response to both labile OM inputs. Overall, these findings suggest that shrub expansion could fundamentally alter biogeochemical cycling in the subarctic, yielding more N available for plant uptake in these N-limited soils, thus driving positive plantâsoil feedbacks
Heated soil-water extract effect on bacterial growth: pH or toxic compounds?
Fire-induced soil changes influence indirectly on soil microbial response, mainly due to pH increases and organic matter alterations. Nevertheless, field studies include overlapped effects and it is difficult distinguish the real origin of microbial response. In this work we have performed a laboratory experiment focus on the study of heated soil-water extract effect on bacterial growth, trying to isolate pH and soluble organic carbon alterations induced by heating soil at different temperatures. Bacterial growth was estimated by 3H-leucine incorporation technique which allows isolate bacterial activity response to an alteration. Different heated treatments were applied to unaltered forest soil samples, to simulate moderate (heating at 300 oC) or high (heating at 500 oC) intensity fire. In order to isolate possible pH changes effect, the experience was repeated adding pH buffers to bring the extract to the unaltered soil pH. Preliminary results show bacterial growth inhibition in both heated treatment compared to bacterial growth of the same bacterial suspension incubated with water. The reestablishment of pH improve the bacterial growth of samples incubated in heated soil-water extract, with a more marked effect on incubation soil-water extract from soil heated at 500 oC. These results evidence the importance of pH changes on low pH adapted bacterial community and the presence of other factors presents in the soluble fraction that are limiting bacterial proliferation
Partial drying accelerates bacterial growth recovery to rewetting
Fluctuations in soil moisture create drying-rewetting events affecting the activity of microorganisms. Microbial responses to drying-rewetting are mostly studied in soils that are air-dried before rewetting. Upon rewetting, two patterns of bacterial growth have been observed. In the Type 1 pattern, bacterial growth rates increase immediately in a linear fashion. In the Type 2 pattern, bacterial growth rates increase exponentially after a lag period. However, soils are often only partially dried. Partial drying (higher remaining moisture content before rewetting) may be considered a less harsh treatment compared with air-drying. We hypothesized that a soil with a Type 2 response upon rewetting air-dried soil would transform into a Type 1 response if dried partially before rewetting. Two soils were dried to a gradient of different moisture content. Respiration and bacterial growth rates were then measured before and during 48 h after rewetting to 50% of water holding capacity (WHC). Initial moisture content determined growth and respiration in a sigmoidal fashion, with lowest activity in air-dried soil and maximum above ca. 30% WHC. Partial drying resulted in shorter lag periods, shorter recovery times and lower maximum bacterial growth rates after rewetting. The respiration after rewetting was lower when soil was partially dried and higher when soils were air-dried. The threshold moisture content where transition from a Type 2 to a Type 1 response occurred was about 14% WHC, while >30% WHC resulted in no rewetting effect. We combine our result with other recent reports to propose a framework of response patterns after drying-rewetting, where the harshness of drying determines the response pattern of bacteria upon rewetting dried soils
Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment
Temperature not only has direct effects on microbial activity, but can also affect activity indirectly by changing the temperature dependency of the community. This would result in communities performing better over time in response to increased temperatures. We have for the first time studied the effect of soil temperature (5â50â°C) on the community adaptation of both bacterial (leucine incorporation) and fungal growth (acetateâinâergosterol incorporation). Growth at different temperatures was estimated after about a month using a shortâterm assay to avoid confounding the effects of temperature on substrate availability. Before the experiment started, fungal and bacterial growth was optimal around 30â°C. Increasing soil temperature above this resulted in an increase in the optimum for bacterial growth, correlated to soil temperature, with parallel shifts in the total response curve. Below the optimum, soil temperature had only minor effects, although lower temperatures selected for communities growing better at the lowest temperature. Fungi were affected in the same way as bacteria, with large shifts in temperature tolerance at soil temperatures above that of optimum for growth. A simplified technique, only comparing growth at two contrasting temperatures, gave similar results as using a complete temperature curve, allowing for large scale measurements also in field situations with small differences in temperature
Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities
The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity
Soil bacterial and fungal communities across a pH gradient in an arable soil
Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth. The ISME Journal (2010) 4, 1340-1351; doi: 10.1038/ismej.2010.58; published online 6 May 2010 
Can bryophyte groups increase functional resolution in tundra ecosystems?
Funding Information: This study was supported by a grant to SL from the European Unionâs Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie, Grant No. 797446 and by the Independent Research Fund Denmark, Grant no. 0135-00140B. Funding from the Academy of Finland (grant 322266), National Science Foundation (1504224, 1836839, PLR-1504381 and PLR-1836898), Independent Research Fund Denmark (9040-00314B), Moscow State University, (project No 121032500089-1), Natural Sciences and Engineering Research Council of Canada, ArcticNet, Polar Continental Shelf Program, Northern Science Training Program, Polar Knowledge Canada, Royal Canadian Mounted Police, Tomsk State University competitiveness improvement program and the Russian Science Foundation (grant No 20-67-46018) are gratefully acknowledged. Matthias Ahrens provided valuable insights on the cushion growth form, and we are most thankful. We thank Gaius Shaver and two anonymous reviewers for providing valuable critique and input to earlier versions of this manuscript. Publisher Copyright: © the author(s) or their institution(s).The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites.Peer reviewe
Pathways from research to sustainable development: insights from ten research projects in sustainability and resilience
Drawing on collective experience from ten collaborative research projects focused on the Global South, we identify three major challenges that impede the translation of research on sustainability and resilience into better-informed choices by individuals and policy-makers that in turn can support transformation to a sustainable future. The three challenges comprise: (i) converting knowledge produced during research projects into successful knowledge application; (ii) scaling up knowledge in time when research projects are short-term and potential impacts are long-term; and (iii) scaling up knowledge across space, from local research sites to larger-scale or even global impact. Some potential pathways for funding agencies to overcome these challenges include providing targeted prolonged funding for dissemination and outreach, and facilitating collaboration and coordination across different sites, research teams, and partner organizations. By systematically documenting these challenges, we hope to pave the way for further innovations in the research cycle
Can bryophyte groups increase functional resolution in tundra ecosystems?
The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites
The responses of moss-associated nitrogen fixation and belowground microbial community to chronic Mo and P supplements in subarctic dry heaths
Aims: Although nitrogen (N) fixation by moss-associated bacteria is the main source of new N in N-limited ecosystems like arctic tundra, we do not know which nutrient, molybdenum (Mo) or phosphorus (P), is rate-limiting for sustaining this process in the long-term. Further, how moss-associated N2 fixation impacts the belowground microbial regulation of decomposition remains unresolved. Methods: Moss-associated N2 fixation and soil microbial process rates, abundance and community structure were assessed in long-term P and Mo field additions in the Subarctic during three years. Results: We found tendencies for stimulation of moss-associated N2 fixation by Mo in the short term, by P in the long-term, and tendencies for a stimulation of soil microbial activity by P. However, large variation in microbial activity within and below the moss exceeded any systematic variation induced by the field treatments. Our findings suggest that soil microbial activity is not limited by N at our site, and that Mo and P only occasionally limit N2 fixation during a growing season. Conclusions: Since increasing CO2 concentrations can induce nutrient limitation, the here reported transient limitation can easily shift into a chronic one with significant implications for ecosystem productivity and biogeochemistry
- âŠ