2,365 research outputs found

    Multi-State Analysis of the OCS Ultraviolet Absorption Including Vibrational Structure

    Get PDF
    The first absorption band of OCS (carbonyl sulfide) is analyzed using potential energy surfaces and transition dipole moment functions of the lowest four singlet and the lowest four triplet states. Excitation of the 21A\u27 state is predominant except at very low photon energies. It is shown that the vibrational structures in the center of the band are due to excitation of the 23A triplet state, whereas the structures at the very low energies are caused by bending excitation in the potential wells of states 21A\u27 and 11A

    The Ultraviolet Spectrum of OCS from First Principles: Electronic Transitions, Vibrational Structure and Temperature Dependence

    Get PDF
    Global three dimensional potential energy surfaces and transition dipole moment functions are calculated for the lowest singlet and triplet states of carbonyl sulfide at the multireference configuration interaction level of theory. The first ultraviolet absorption band is then studied by means of quantum mechanical wave packet propagation. excitation of the repulsive 21A\u27 state gives the main contribution to the cross section. Excitation of the repulsive 11A state is about a factor of 20 weaker at the absorption peak (Eph ≈ 45 000 cm-1) but becomes comparable to the 21A\u27 state absorption with decreasing energy (35 000 cm-1) and eventually exceeds it. Direct excitation of the repulsive triplet states is negligible except at photon energies Eph \u3c 38 000 cm-1. The main structure observed in the cross section is caused by excitation of the bound 23A state, which is nearly degerate with the 2 1A\u27 state in the Franck-Condon region. The structure observed in the low energy tail of the spectrum is caused by excitation of quasi-bound bending vibrational states of the 21A\u27 and 11A electronic states. The absorption cross sections agree well with experimental data and the temperature dependence of the cross section is well reproduced

    Halogen chemistry reduces tropospheric O3 radiative forcing

    Get PDF
    Tropospheric ozone (O3) is a global warming gas, however the lack of a firm observational record since the preindustrial period means that estimates of its radiative forcing (RFTO3) rely on model calculations. Recent observational evidence shows that halogens are pervasive in the troposphere and need to be represented in chemistry-transport models for an accurate simulation of present-day O3. Using the GEOS-Chem model we show that tropospheric halogen chemistry is more active in the present-day than in the pre-industrial. This is due to increased oceanic iodine emissions driven by increased surface O3, higher anthropogenic emissions of bromo-carbons and an increased flux of bromine from the stratosphere. We calculate pre-industrial to present-day increases in the tropospheric O3 burden of 113 Tg without halogens but only 95 Tg with, leading to a reduction in RFTO3 from 0.432 to 0.366 W m−2. We attribute ~ 40 % of this reduction to the ocean-atmosphere iodine feedback, ~ 30 % to increased anthropogenic halogens in the troposphere and ~ 30 % to increased bromine flux from the stratosphere. This reduction of RFTO3 (0.066 W m−2) is greater than that from stratospheric ozone (~ 0.05 W m−2). Estimates of RFTO3 that fail to consider halogen chemistry are likely overestimates (~ 20 %)

    Photodissociation of N\u3csub\u3e2\u3c/sub\u3eO: Energy Partitioning

    Get PDF
    The energy partitioning in the UV photodissociation of N2O is investigated by means of quantum mechanical wave packet and classical trajectory calculations using recently calculated potential energy surfaces. Vibrational excitation of N2 is weak at the onset of the absorption spectrum, but becomes stronger with increasing photon energy. Since the NNO equilibrium angles in the ground and the excited state differe by about 70°, the molecule experiences an extraordinarily large torque during fragmentation producing N2in very high rotational states. The vibrational and rotational distributions obtained from the quantum mechanical and the classical calculations agree remarkably well. The shape of the rotational distributions is semi-quantitatively explained by a two-dimensional verision of the reflection principle. The calculated rotational distribution for excitation with λ = 204 nm and the translational energy distribution for 193 nm agree well with experimental results, except for the tails of the experimental distributions corresponding to excitation of the highest rotational states. Inclusion of nonadiabatic transitions from the excited to the ground electronic state at relatively large N2-O separations, studied by trajectory surface hopping, improves the agreement at high j

    Ozone loss derived from balloon-borne tracer measurements and the SLIMCAT CTM

    Get PDF
    Balloon-borne measurements of CFC-11 (on flights of the DIRAC in situ gas chromatograph and the DESCARTES grab sampler), ClO and O3 were made during the 1999/2000 winter as part of the SOLVE-THESEO 2000 campaign. Here we present the CFC-11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3-D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC-11 and O3 measured on the flights, the peak ozone loss (1200 ppbv) occurs in the 440–470 K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three independent balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days

    Metagenomics Reveals Bacterial and Archaeal Adaptation to Urban Land-Use : N Catabolism, Methanogenesis, and Nutrient Acquisition

    Get PDF
    Urbanization results in the systemic conversion of land-use, driving habitat and biodiversity loss. The "urban convergence hypothesis" posits that urbanization represents a merging of habitat characteristics, in turn driving physiological and functional responses within the biotic community. To test this hypothesis, we sampled five cities (Baltimore, MD, United States; Helsinki and Lahti, Finland; Budapest, Hungary; Potchefstroom, South Africa) across four different biomes. Within each city, we sampled four land-use categories that represented a gradient of increasing disturbance and management (from least intervention to highest disturbance: reference, remnant, turf/lawn, and ruderal). Previously, we used amplicon sequencing that targeted bacteria/archaea (16S rRNA) and fungi (ITS) and reported convergence in the archaeal community. Here, we applied shotgun metagenomic sequencing and QPCR of functional genes to the same soil DNA extracts to test convergence in microbial function. Our results suggest that urban land-use drives changes in gene abundance related to both the soil N and C metabolism. Our updated analysis found taxonomic convergence in both the archaeal and bacterial community (16S amplicon data). Convergence of the archaea was driven by increased abundance of ammonia oxidizing archaea and genes for ammonia oxidation (QPCR and shotgun metagenomics). The proliferation of ammonia-oxidizers under turf and ruderal land-use likely also contributes to the previously documented convergence of soil mineral N pools. We also found a higher relative abundance of methanogens (amplicon sequencing), a higher relative abundance of gene sequences putatively identified as Ni-Fe hydrogenase and nickel uptake (shotgun metagenomics) under urban land-use; and a convergence of gene sequences putatively identified as contributing to the nickel transport function under urban turf sites. High levels of disturbance lead to a higher relative abundance of gene sequences putatively identified as multiple antibiotic resistance protein marA and multidrug efflux pump mexD, but did not lead to an overall convergence in antibiotic resistance gene sequences.Peer reviewe

    Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury

    Get PDF
    Aircraft and satellite observations indicate the presence of ppt (ppt ≡ pmol/mol) levels of BrO in the free troposphere with important implications for the tropospheric budgets of ozone, OH, and mercury. We can reproduce these observations with the GEOS-Chem global tropospheric chemistry model by including a broader consideration of multiphase halogen (Br–Cl) chemistry than has been done in the past. Important reactions for regenerating BrO from its non-radical reservoirs include HOBr+Br−/Cl− in both aerosols and clouds, and oxidation of Br− by ClNO3 and ozone. Most tropospheric BrO in the model is in the free troposphere, consistent with observations, and originates mainly from the photolysis and oxidation of ocean-emitted CHBr3. Stratospheric input is also important in the upper troposphere. Including production of gas phase inorganic bromine from debromination of acidified sea salt aerosol increases free tropospheric Bry by about 30 %. We find HOBr to be the dominant gas-phase reservoir of inorganic bromine. Halogen (Br-Cl) radical chemistry as implemented here in GEOS-Chem drives 14 % and 11 % decreases in the global burdens of tropospheric ozone and OH, respectively, a 16 % increase in the atmospheric lifetime of methane, and an atmospheric lifetime of 6 months for elemental mercury. The dominant mechanism for the Br-Cl driven tropospheric ozone decrease is oxidation of NOx by formation and hydrolysis of BrNO3 and ClNO3

    Immune Responses in Healthy and Allergic Individuals Are Characterized by a Fine Balance between Allergen-specific T Regulatory 1 and T Helper 2 Cells

    Get PDF
    The mechanisms by which immune responses to nonpathogenic environmental antigens lead to either allergy or nonharmful immunity are unknown. Single allergen-specific T cells constitute a very small fraction of the whole CD4+ T cell repertoire and can be isolated from the peripheral blood of humans according to their cytokine profile. Freshly purified interferon-γ–, interleukin (IL)-4–, and IL-10–producing allergen-specific CD4+ T cells display characteristics of T helper cell (Th)1-, Th2-, and T regulatory (Tr)1–like cells, respectively. Tr1 cells consistently represent the dominant subset specific for common environmental allergens in healthy individuals; in contrast, there is a high frequency of allergen-specific IL-4–secreting T cells in allergic individuals. Tr1 cells use multiple suppressive mechanisms, IL-10 and TGF-β as secreted cytokines, and cytotoxic T lymphocyte antigen 4 and programmed death 1 as surface molecules. Healthy and allergic individuals exhibit all three allergen-specific subsets in different proportions, indicating that a change in the dominant subset may lead to allergy development or recovery. Accordingly, blocking the suppressor activity of Tr1 cells or increasing Th2 cell frequency enhances allergen-specific Th2 cell activation ex vivo. These results indicate that the balance between allergen-specific Tr1 cells and Th2 cells may be decisive in the development of allergy

    LoCuSS: First Results from Strong-lensing Analysis of 20 Massive Galaxy Clusters at z~0.2

    Get PDF
    We present a statistical analysis of a sample of 20 strong lensing clusters drawn from the Local Cluster Substructure Survey (LoCuSS), based on high resolution Hubble Space Telescope imaging of the cluster cores and follow-up spectroscopic observations using the Keck-I telescope. We use detailed parameterized models of the mass distribution in the cluster cores, to measure the total cluster mass and fraction of that mass associated with substructures within R<250kpc.These measurements are compared with the distribution of baryons in the cores, as traced by the old stellar populations and the X-ray emitting intracluster medium. Our main results include: (i) the distribution of Einstein radii is log-normal, with a peak and 1sigma width of =1.16+/-0.28; (ii) we detect an X-ray/lensing mass discrepancy of =1.3 at 3 sigma significance -- clusters with larger substructure fractions displaying greater mass discrepancies, and thus greater departures from hydrostatic equilibrium; (iii) cluster substructure fraction is also correlated with the slope of the gas density profile on small scales, implying a connection between cluster-cluster mergers and gas cooling. Overall our results are consistent with the view that cluster-cluster mergers play a prominent role in shaping the properties of cluster cores, in particular causing departures from hydrostatic equilibrium, and possibly disturbing cool cores. Our results do not support recent claims that large Einstein radius clusters present a challenge to the CDM paradigm.Comment: 28 pages, 14 figures, accepted for publication in MNRAS, replaced with accepted versio
    corecore