19 research outputs found

    A combination of transposable elements and magnetic cell sorting provides a very efficient transgenesis system for chicken primary erythroid progenitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stable transgenesis is an undeniable key to understanding any genetic system. Retrovirus-based insertional strategies, which feature several technical challenges when they are used, are often limited to one particular species, and even sometimes to a particular cell type as the infection depends on certain cellular receptors. A universal-like system, which would allow both stable transgene expression independent of the cell type and an efficient sorting of transfected cells, is required when handling cellular models that are incompatible with retroviral strategies.</p> <p>Results</p> <p>We report here on the combination of a stable insertional transgenesis technique, based on the Tol2 transposon system together with the magnetic cell sorting (MACS) technique, which allows specific selection of cells carrying the transgene in an efficient, reliable and rapid way.</p> <p>Conclusion</p> <p>This new Tol2/MACS system leads to stable expression in a culture of primary chicken erythroid cells highly enriched in cells expressing the transgene of interest. This system could be used in a wide variety of vertebrate species.</p

    α-Synuclein-Confocal Nanoscanning (ASYN-CONA), a Bead-Based Assay for Detecting Early-Stage α-Synuclein Aggregation

    Get PDF
    α-Synuclein fibrils are considered a hallmark of Parkinson’s disease and other synucleinopathies. However, small oligomers that formed during the early stages of α-synuclein aggregation are thought to be the main toxic species causing disease. The formation of α-synuclein oligomers has proven difficult to follow, because of the heterogeneity and transient nature of the species formed. Here, a novel bead-based aggregation assay for monitoring the earliest stages of α-synuclein oligomerization, α-Synuclein–Confocal Nanoscanning (ASYN-CONA), is presented. The α-synuclein A91C single cysteine mutant is modified with a trifunctional chemical tag, which allows simultaneous fluorescent labeling with a green dye (tetramethylrhodamine, TMR) and attachment to microbeads. Beads with bound TMR-labeled α-synuclein are then incubated with a red dye (Cy5)-labeled variant of α-synuclein A91C, and EtOH (20%) to induce aggregation. Aggregation is detected by confocal scanning imaging, below the equatorial plane of the beads, which is known as the CONA technique. On-bead TMR-labeled α-synuclein and aggregated Cy5-labeled α-synuclein from the solution are quantitatively monitored in parallel by detection of fluorescent halos or “rings”. α-Synuclein on-bead oligomerization results in a linear increase of red bead ring fluorescence intensity over a period of 5 h. Total internal reflection fluorescence microscopy was performed on oligomers cleaved from the beads, and it revealed that (i) oligomers are sufficiently stable in solution to investigate their composition, consisting of 6 ± 1 monomer units, and (ii) oligomers containing a mean of 15 monomers bind Thioflavin-T. Various known inhibitors of α-synuclein aggregation were used to validate the ASYN-CONA assay for drug screening. Baicalein, curcumin, and rifampicin showed concentration-dependent inhibition of the α-synuclein aggregation and the IC<sub>50</sub> (the concentration of the compound at which the maxiumum intensity was reduced by one-half) were calculated

    Real-time tracking of complex ubiquitination cascades using a fluorescent confocal on-bead assay

    Get PDF
    Background: The ubiquitin-proteasome system (UPS) controls the stability, localization and/or activity of the proteome. However, the identification and characterization of complex individual ubiquitination cascades and their modulators remains a challenge. Here, we report a broadly applicable, multiplexed, miniaturized on-bead technique for real-time monitoring of various ubiquitination-related enzymatic activities. The assay, termed UPS-confocal fluorescence nanoscanning (UPS-CONA), employs a substrate of interest immobilized on a micro-bead and a fluorescently labeled ubiquitin which, upon enzymatic conjugation to the substrate, is quantitatively detected on the bead periphery by confocal imaging.Results: UPS-CONA is suitable for studying individual enzymatic activities, including various E1, E2, and HECT-type E3 enzymes, and for monitoring multi-step reactions within ubiquitination cascades in a single experimental compartment. We demonstrate the power of the UPS-CONA technique by simultaneously following ubiquitin transfer from Ube1 through Ube2L3 to E6AP. We applied this multi-step setup to investigate the selectivity of five ubiquitination inhibitors reportedly targeting different classes of ubiquitination enzymes. Using UPS-CONA, we have identified a new activity of a small molecule E2 inhibitor, BAY 11-7082, and of a HECT E3 inhibitor, heclin, towards the Ube1 enzyme.Conclusions: As a sensitive, quantitative, flexible, and reagent-efficient method with a straightforward protocol, UPS-CONA constitutes a powerful tool for interrogation of ubiquitination-related enzymatic pathways and their chemical modulators, and is readily scalable for large experiments

    PuLSE:Quality control and quantification of peptide sequences explored by phage display libraries

    Get PDF
    The design of highly diverse phage display libraries is based on assumption that DNA bases are incorporated at similar rates within the randomized sequence. As library complexity increases and expected copy numbers of unique sequences decrease, the exploration of library space becomes sparser and the presence of truly random sequences becomes critical. We present the program PuLSE (Phage Library Sequence Evaluation) as a tool for assessing randomness and therefore diversity of phage display libraries. PuLSE runs on a collection of sequence reads in the fastq file format and generates tables profiling the library in terms of unique DNA sequence counts and positions, translated peptide sequences, and normalized 'expected' occurrences from base to residue codon frequencies. The output allows at-a-glance quantitative quality control of a phage library in terms of sequence coverage both at the DNA base and translated protein residue level, which has been missing from toolsets and literature. The open source program PuLSE is available in two formats, a C++ source code package for compilation and integration into existing bioinformatics pipelines and precompiled binaries for ease of use

    The ubiquitin-conjugating enzyme CDC34 is essential for cytokinesis in contrast to putative subunits of a SCF complex in Trypanosoma brucei

    Get PDF
    The ubiquitin-proteasome system is a post-translational regulatory pathway for controlling protein stability and activity that underlies many fundamental cellular processes, including cell cycle progression. Target proteins are tagged with ubiquitin molecules through the action of an enzymatic cascade composed of E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin ligases. One of the E3 ligases known to be responsible for the ubiquitination of cell cycle regulators in eukaryotes is the SKP1-CUL1-F-box complex (SCFC). In this work, we identified and studied the function of homologue proteins of the SCFC in the life cycle of Trypanosoma brucei, the causal agent of the African sleeping sickness. Depletion of trypanosomal SCFC components TbRBX1, TbSKP1, and TbCDC34 by RNAi resulted in decreased growth rate and contrasting cell cycle abnormalities for both procyclic (PCF) and bloodstream (BSF) forms. Depletion of TbRBX1 in PCF cells interfered with kinetoplast replication, whilst depletion of TbSKP1 arrested PCF and BSF cells in the G1/S transition. Silencing of TbCDC34 in BSF cells resulted in a block in cytokinesis and caused rapid clearance of parasites from infected mice. We also show that TbCDC34 is able to conjugate ubiquitin in vitro and in vivo, and that its activity is necessary for T. brucei infection progression in mice. This study reveals that different components of a putative SCFC have contrasting phenotypes once depleted from the cells, and that TbCDC34 is essential for trypanosome replication, making it a potential target for therapeutic intervention

    Example protein residue occurrence heatmap.

    No full text
    <p>Protein residue occurrence heatmap for the exemplar dataset accompanying the PuLSE software distribution. Phenylalanine is slightly enriched over its expected occurrence rate for each position within the library. Lysine is underrepresented at each position. However, the enrichment and underrepresentations are not pronounced, ranging from 0.44 to 3.27 of expected.</p

    Example DNA base occurrence heatmap.

    No full text
    <p>DNA base occurrence heatmap for exemplaric dataset accompanying the PuLSE software distribution. Enrichment and underrepresentation is not pronounced, suggesting the profiled phage library possesses a high degree of randomness and therefore the expected diversity.</p

    Library definition format.

    No full text
    <p>Example of the library definition format allowing robust identification of randomized positions within a sequence from forwards and reverse complementary strand reads.</p

    The ubiquitin-conjugating enzyme CDC34 is essential for cytokinesis in contrast to putative subunits of a SCF complex in Trypanosoma brucei

    No full text
    The ubiquitin-proteasome system is a post-translational regulatory pathway for controlling protein stability and activity that underlies many fundamental cellular processes, including cell cycle progression. Target proteins are tagged with ubiquitin molecules through the action of an enzymatic cascade composed of E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin ligases. One of the E3 ligases known to be responsible for the ubiquitination of cell cycle regulators in eukaryotes is the SKP1-CUL1-F-box complex (SCFC). In this work, we identified and studied the function of homologue proteins of the SCFC in the life cycle of Trypanosoma brucei, the causal agent of the African sleeping sickness. Depletion of trypanosomal SCFC components TbRBX1, TbSKP1, and TbCDC34 by RNAi resulted in decreased growth rate and contrasting cell cycle abnormalities for both procyclic (PCF) and bloodstream (BSF) forms. Depletion of TbRBX1 in PCF cells interfered with kinetoplast replication, whilst depletion of TbSKP1 arrested PCF and BSF cells in the G1/S transition. Silencing of TbCDC34 in BSF cells resulted in a block in cytokinesis and caused rapid clearance of parasites from infected mice. We also show that TbCDC34 is able to conjugate ubiquitin in vitro and in vivo, and that its activity is necessary for T. brucei infection progression in mice. This study reveals that different components of a putative SCFC have contrasting phenotypes once depleted from the cells, and that TbCDC34 is essential for trypanosome replication, making it a potential target for therapeutic interventio
    corecore