43 research outputs found

    The impact of polymorphic variations in the 5p15, 6p12, 6p21 and 15q25 loci on the risk and prognosis of Portuguese patients with non-small cell lung cancer

    Get PDF
    Polymorphic variants in the 5p15, 6p12, 6p21, and 15q25 loci were demonstrated to potentially contribute to lung cancer carcinogenesis. Therefore, this study was performed to assess the role of those variants in non-small cell lung cancer (NSCLC) risk and prognosis in a Portuguese population. MATERIALS AND METHODS: Blood from patients with NSCLC was prospectively collected. To perform an association study, DNA from these patients and healthy controls were genotyped for a panel of 19 SNPs using a Sequenom庐 MassARRAY platform. Kaplan-Meier curves were used to assess the overall survival (OS) and progression-free survival (PFS). RESULTS: One hundred and forty-four patients with NSCLC were successfully consecutively genotyped for the 19 SNPs. One SNP was associated with NSCLC risk: rs9295740 G/A. Two SNPs were associated with non-squamous histology: rs3024994 (VEGF intron 2) T/C and rs401681 C/T. Three SNPs were associated with response rate: rs3025035 (VEGF intron 7) C/T, rs833061 (VEGF -460) C/T and rs9295740 G/A. One SNP demonstrated an influence on PFS: rs401681 C/T at 5p15, p?=?0.021. Four SNPs demonstrated an influence on OS: rs2010963 (VEGF +405 G/C), p?=?0.042; rs3025010 (VEGF intron 5 C/T), p?=?0.047; rs401681 C/T at 5p15, p?=?0.046; and rs31489 C/A at 5p15, p?=?0.029. CONCLUSIONS: Our study suggests that SNPs in the 6p12, 6p21, and 5p15 loci may serve as risk, predictive and prognostic NSCLC biomarkers. In the future, SNPs identified in the genomes of patients may improve NSCLC screening strategies and therapeutic management as well.This project was supported by Programa Doutoral em Medicina e Oncologia Molecular, University of Porto, Porto, Portugal and University of Minho, Braga, Portugal. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    MENSURA脟脙O DA DESIGUALDADE EDUCACIONAL ENTRE OS MUNIC脥PIOS NORDESTINOS

    Get PDF
    RESUMO O objetivo deste artigo 茅 analisar a desigualdade educacional da Regi茫o Nordeste com base nos dados do Censo Demogr谩fico de 2010. Para este fim, foi calculado o 脥ndice de Gini Educacional (IGE) para a parcela da popula莽茫o economicamente ativa com 15 anos ou mais de idade, residentes nos 1793 munic铆pios nordestinos. Foram empregadas as t茅cnicas de An谩lise Explorat贸ria de Dados Espaciais (AEDE) e An谩lise de Regress茫o Espacial para detectar a import芒ncia de algumas vari谩veis relacionadas ao contexto das fam铆lias, do sistema educacional e da economia dos munic铆pios sobre o 脥ndice de Gini Educacional. Verificou-se que o estado da Bahia apresentou a menor desigualdade educacional no Nordeste, com IGE de 0,394, enquanto o maior 铆ndice de desigualdade foi detectado no estado de Alagoas (0,467). Quanto 脿 analise espacial, foi detectada depend锚ncia espacial no tocante 脿 desigualdade educacional entre os munic铆pios e seus vizinhos. Constatou-se tamb茅m que a renda per capita, a frequ锚ncia escolar l铆quida, a presen莽a de IES e o PIB per capita municipal contribuem na redu莽茫o da desigualdade, e que o baixo impacto de vari谩veis relacionadas ao sistema educacional pode ser atribu铆do ao seu efeito no longo prazo e, portanto, ressalta-se a import芒ncia do investimento e as pol铆ticas p煤blicas educacionais, que s贸 ter茫o reflexo na redu莽茫o da desigualdade educacional dos munic铆pios no futuro

    Brazilian coffee genome project: an EST-based genomic resource

    Full text link

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Background: A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97\ub71 (95% UI 95\ub78-98\ub71) in Iceland, followed by 96\ub76 (94\ub79-97\ub79) in Norway and 96\ub71 (94\ub75-97\ub73) in the Netherlands, to values as low as 18\ub76 (13\ub71-24\ub74) in the Central African Republic, 19\ub70 (14\ub73-23\ub77) in Somalia, and 23\ub74 (20\ub72-26\ub78) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91\ub75 (89\ub71-93\ub76) in Beijing to 48\ub70 (43\ub74-53\ub72) in Tibet (a 43\ub75-point difference), while India saw a 30\ub78-point disparity, from 64\ub78 (59\ub76-68\ub78) in Goa to 34\ub70 (30\ub73-38\ub71) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4\ub78-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20\ub79-point to 17\ub70-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17\ub72-point to 20\ub74-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view-and subsequent provision-of quality health care for all populations

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Copyright 漏 2018 The Author(s). Published by Elsevier Ltd. Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97路1 (95% UI 95路8-98路1) in Iceland, followed by 96路6 (94路9-97路9) in Norway and 96路1 (94路5-97路3) in the Netherlands, to values as low as 18路6 (13路1-24路4) in the Central African Republic, 19路0 (14路3-23路7) in Somalia, and 23路4 (20路2-26路8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91路5 (89路1-93路6) in Beijing to 48路0 (43路4-53路2) in Tibet (a 43路5-point difference), while India saw a 30路8-point disparity, from 64路8 (59路6-68路8) in Goa to 34路0 (30路3-38路1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4路8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20路9-point to 17路0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17路2-point to 20路4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view - and subsequent provision - of quality health care for all populations
    corecore