39 research outputs found

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    P-Doping a Porous Carbon Host Promotes the Lithium Storage Performance of Red Phosphorus

    No full text
    Red phosphorus (RP) is a promising anode material for use in lithium-ion batteries (LIBs) due to its high theoretical specific capacity (2596 mA h g-1). However, the practical use of RP-based anodes has been challenged by the material’s low intrinsic electrical conductivity and poor structural stability during lithiation. Here, we describe a phosphorus-doped porous carbon (P-PC) and disclose how the dopant improves the Li storage performance of RP that was incorporated into the P-PC (designated as RP@P-PC). P-doping porous carbon was achieved using an in situ method wherein the heteroatom was added as the porous carbon was being formed. The phosphorus dopant effectively improves the interfacial properties of the carbon matrix as subsequent RP infusion results in high loadings, small particle sizes, and uniform distribution. In half-cells, an RP@P-PC composite was found to exhibit outstanding performance in terms of the ability to store and utilize Li. The device delivered a high specific capacitance and rate capability (1848 and 1111 mA h g-1 at 0.1 and 10.0 A g-1, respectively) as well as excellent cycling stability (1022 mA h g-1 after 800 cycles at 2.0 A g-1). Exceptional performance metrics were also measured when the RP@P-PC was used as an anode material in full cells that contained lithium iron phosphate as the cathode material. The methodology described can be extended to the preparation of other P-doped carbon materials that are employed in contemporary energy storage applications.11Nsciescopu

    Nonstoichiometric Scandium Oxide Hybridized in N-Doped Porous Graphitic Carbon Promotes the Rate Capability of Lithium-Sulfur Batteries

    No full text
    Nonstoichiometric compounds are widely used in contemporary energy technologies due to their high surface polarity, tailored electronic structure, high electrical conductivity, and other enhanced properties. However, the preparation of such nonstoichiometric compounds can be complicated and, in some cases, uncontrollable and dangerous. Here, we report a one-pot strategy for synthesizing N-doped porous graphitic carbon that is hybridized with nonstoichiometric scandium oxide (denoted as ScO0.95@N-PGC) and show that the composite significantly promotes sulfur cathode kinetics in lithium-sulfur (Li-S) batteries. The synthesis of the ScO0.95@N-PGC composite entails heating a porous dry gel that consists of a C source (glucose), a N source (dicyandiamide), and a Sc source (Sc(NO3)3·H2O). Thermally decomposing the dicyandiamide creates a highly reductive atmosphere that simultaneously affords the hypoxic state of the ScO0.95 and dopes the carbon matrix with nitrogen. Density functional theory reveals the presence of oxygen vacancies that enable the ScO0.95 crystals to function as excellent electrical conductors, exhibit enhanced adsorption toward polysulfides, and accelerate the cathode reactions by lowering the corresponding activation energies. Moreover, Li-S cells prepared from the ScO0.95@N-PGC composite display a high specific capacity (1046 mA h g-1 at 0.5 C), an outstanding cycling stability (641 mA h g-1 after 1000 charge-discharge cycles at 0.5 C, a capacity decay of 0.038% per cycle), and a particularly outstanding rate capability (438 mA h g-1 at 8 C). The methodology described establishes a sustainable approach for synthesizing nonstoichiometric compounds while broadening their potential utility in a broad range of energy technologies.11Nsciescopu

    Mass Testing and Characterization of 20-inch PMTs for JUNO

    No full text
    Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5,000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK)

    Model Independent Approach of the JUNO 8^8B Solar Neutrino Program

    No full text
    The physics potential of detecting 8^8B solar neutrinos is exploited at the Jiangmen Underground Neutrino Observatory (JUNO), in a model independent manner by using three distinct channels of the charged-current (CC), neutral-current (NC) and elastic scattering (ES) interactions. Due to the largest-ever mass of 13^{13}C nuclei in the liquid-scintillator detectors and the potential low background level, 8^8B solar neutrinos would be observable in the CC and NC interactions on 13^{13}C for the first time. By virtue of optimized event selections and muon veto strategies, backgrounds from the accidental coincidence, muon-induced isotopes, and external backgrounds can be greatly suppressed. Excellent signal-to-background ratios can be achieved in the CC, NC and ES channels to guarantee the 8^8B solar neutrino observation. From the sensitivity studies performed in this work, we show that one can reach the precision levels of 5%, 8% and 20% for the 8^8B neutrino flux, sin2θ12\sin^2\theta_{12}, and Δm212\Delta m^2_{21}, respectively, using ten years of JUNO data. It would be unique and helpful to probe the details of both solar physics and neutrino physics. In addition, when combined with SNO, the world-best precision of 3% is expected for the 8^8B neutrino flux measurement

    The JUNO experiment Top Tracker

    No full text
    20 pagesInternational audienceThe main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO's water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    No full text
    International audienceCore-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN
    corecore