13 research outputs found

    CLASH: Precise New Constraints on the Mass Profile of Abell 2261

    Get PDF
    We precisely constrain the inner mass profile of Abell 2261 (z=0.225) for the first time and determine this cluster is not "over-concentrated" as found previously, implying a formation time in agreement with {\Lambda}CDM expectations. These results are based on strong lensing analyses of new 16-band HST imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). Combining this with revised weak lensing analyses of Subaru wide field imaging with 5-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass M_vir = 2.2\pm0.2\times10^15 M\odot/h70 (within r \approx 3 Mpc/h70) and concentration c = 6.2 \pm 0.3 when assuming a spherical halo. This agrees broadly with average c(M,z) predictions from recent {\Lambda}CDM simulations which span 5 <~ 8. Our most significant systematic uncertainty is halo elongation along the line of sight. To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be ~35% lower than our lensing-derived profile at r2500 ~ 600 kpc. Agreement can be achieved by a halo elongated with a ~2:1 axis ratio along our line of sight. For this elongated halo model, we find M_vir = 1.7\pm0.2\times10^15 M\odot/h70 and c_vir = 4.6\pm0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find these tend to lower Mvir further by ~7% and increase cvir by ~5%.Comment: Submitted to the Astrophysical Journal. 19 pages, 14 figure

    CLASH: Complete Lensing Analysis of the Largest Cosmic Lens MACS J0717.5+3745 and Surrounding Structures

    Get PDF
    The galaxy cluster MACS J0717.5+3745 (z=0.55) is the largest known cosmic lens, with complex internal structures seen in deep X-ray, Sunyaev-Zel'dovich effect and dynamical observations. We perform a combined weak and strong lensing analysis with wide-field BVRi'z' Subaru/Suprime-Cam observations and 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH). We find consistent weak distortion and magnification measurements of background galaxies, and combine these signals to construct an optimally estimated radial mass profile of the cluster and its surrounding large-scale structure out to 5 Mpc/h. We find consistency between strong-lensing and weak-lensing in the region where these independent data overlap, <500 kpc/h. The two-dimensional weak-lensing map reveals a clear filamentary structure traced by distinct mass halos. We model the lensing shear field with 9 halos, including the main cluster, corresponding to mass peaks detected above 2.5\sigma_\kappa. The total mass of the cluster as determined by the different methods is M_{vir}=(2.8\pm0.4) \times 10^15 M_sun. Although this is the most massive cluster known at z>0.5, in terms of extreme value statistics we conclude that the mass of MACS J0717.5+3745 by itself is not in serious tension with LambdaCDM, representing only a ~2{\sigma} departure above the maximum simulated halo mass at this redshift.Comment: 24 pages, 16 pages, 6 tables; matches version accepted for publication in Ap

    CD3 epsilon recruits Numb to promote TCR degradation

    No full text
    Modulation of TCR signaling upon ligand binding is achieved by changes in the equilibrium between TCR degradation, recycling and synthesis; surprisingly, the molecular mechanism of such an important process is not fully understood. Here, we describe the role of a new player in the mediation of TCR degradation: the endocytic adaptor Numb. Our data show that Numb inhibition leads to abnormal intracellular distribution and defective TCR degradation in mature T lymphocytes. In addition, we find that Numb simultaneously binds to both Cbl and a site within CD3 epsilon that overlaps with the Nck binding site. As a result, Cbl couples specifically to the CD3 epsilon chain to mediate TCR degradation. The present study unveils a novel role of Numb that lies at the heart of TCR signaling initiation and termination.The work was funded by grants BFU2004-01771, BFU2007-67476 and BFU2010-21634 from the Spanish Science and Education Ministry, a Special Intramural CSIC (Spanish Science Council) grant and the Excellence grant P06-CTS-02112 from the Department of Science and Innovation of the Regional Government of Andalucia, Spain (M.C.), and grants SAF08-01581 and RD06/0020/0017 (J.L.).Peer reviewe

    Unveiling the Dynamical State of Massive Clusters through the ICL Fraction

    Get PDF
    We have selected a sample of 11 massive clusters of galaxies observed by the Hubble Space Telescope in order to study the impact of the dynamical state on the intracluster light (ICL) fraction, the ratio of total integrated ICL to the total galaxy member light. With the exception of the Bullet cluster, the sample is drawn from the Cluster Lensing and Supernova Survey and the Frontier Fields program, containing five relaxed and six merging clusters. The ICL fraction is calculated in three optical filters using the CHEFs ICL estimator, a robust and accurate algorithm free of a priori assumptions. We find that the ICL fraction in the three bands is, on average, higher for the merging clusters, ranging between ∌7% and 23%, compared with the ∌2%-11% found for the relaxed systems. We observe a nearly constant value (within the error bars) in the ICL fraction of the regular clusters at the three wavelengths considered, which would indicate that the colors of the ICL and the cluster galaxies are, on average, coincident and, thus, so are their stellar populations. However, we find a higher ICL fraction in the F606W filter for the merging clusters, consistent with an excess of lower-metallicity/younger stars in the ICL, which could have migrated violently from the outskirts of the infalling galaxies during the merger event. © 2018. The American Astronomical Society. All rights reserved.We thank the referee for constructive comments that helped to improve the original manuscript. Y.J.-T. would like to thank Dr. Marc Postman for his support, help, and encouragement during her stay at the STScI, which made this work possible. We gratefully acknowledge the computational support of Dr. Fernando Roig. Y.J.-T. also acknowledges financial support from the Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ; fellowship Nota 10, PDR-10) through grant E-26/202.835/2016 and the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES; Science without Borders program, Young Talent Fellowship, BJT) through grant A062/2013. R.A.D. acknowledges support from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) through BP grant 312307/2015-2 and the Financiadora de Estudos e Projetos (FINEP) grant REF. 1217/13-01.13.0279.00. Both Y.J.-T. and R.A.D. also acknowledge support from the Spanish National Research Council (CSIC; I-COOP+ 2016 program) through grant COOPB20263 and the Spanish Ministry of Economy, Industry, and Competitiveness (MINECO) through grants AYA2013-48623-C2-1-P and AYA2016-81065-C2-1-P. K.U. acknowledges support from the Ministry of Science and Technology of Taiwan (grant MOST 103-2628-M-001-003-MY3) and from the Academia Sinica Investigator Award. M.M. acknowledges support from the Italian Ministry of Foreign Affairs and International Cooperation, Directorate General for Country Promotion

    Unveiling the Dynamical State of Massive Clusters through the ICL Fraction

    Get PDF
    We have selected a sample of 11 massive clusters of galaxies observed by the Hubble Space Telescope in order to study the impact of the dynamical state on the intracluster light (ICL) fraction, the ratio of total integrated ICL to the total galaxy member light. With the exception of the Bullet cluster, the sample is drawn from the Cluster Lensing and Supernova Survey and the Frontier Fields program, containing five relaxed and six merging clusters. The ICL fraction is calculated in three optical filters using the CHEFs ICL estimator, a robust and accurate algorithm free of a priori assumptions. We find that the ICL fraction in the three bands is, on average, higher for the merging clusters, ranging between ∌7% and 23%, compared with the ∌2%-11% found for the relaxed systems. We observe a nearly constant value (within the error bars) in the ICL fraction of the regular clusters at the three wavelengths considered, which would indicate that the colors of the ICL and the cluster galaxies are, on average, coincident and, thus, so are their stellar populations. However, we find a higher ICL fraction in the F606W filter for the merging clusters, consistent with an excess of lower-metallicity/younger stars in the ICL, which could have migrated violently from the outskirts of the infalling galaxies during the merger event

    Unveiling the Dynamical State of Massive Clusters through the ICL Fraction

    No full text
    We have selected a sample of 11 massive clusters of galaxies observed by the Hubble Space Telescope in order to study the impact of the dynamical state on the intracluster light (ICL) fraction, the ratio of total integrated ICL to the total galaxy member light. With the exception of the Bullet cluster, the sample is drawn from the Cluster Lensing and Supernova Survey and the Frontier Fields program, containing five relaxed and six merging clusters. The ICL fraction is calculated in three optical filters using the CHEFs ICL estimator, a robust and accurate algorithm free of a priori assumptions. We find that the ICL fraction in the three bands is, on average, higher for the merging clusters, ranging between ∌7% and 23%, compared with the ∌2%-11% found for the relaxed systems. We observe a nearly constant value (within the error bars) in the ICL fraction of the regular clusters at the three wavelengths considered, which would indicate that the colors of the ICL and the cluster galaxies are, on average, coincident and, thus, so are their stellar populations. However, we find a higher ICL fraction in the F606W filter for the merging clusters, consistent with an excess of lower-metallicity/younger stars in the ICL, which could have migrated violently from the outskirts of the infalling galaxies during the merger event

    JWST Reveals a Possible z ∌ 11 Galaxy Merger in Triply Lensed MACS0647–JD

    No full text
    MACS0647–JD is a triply lensed z ∌ 11 galaxy originally discovered with the Hubble Space Telescope. The three lensed images are magnified by factors of ∌8, 5, and 2 to AB mag 25.1, 25.6, and 26.6 at 3.5 ÎŒ m. The brightest is over a magnitude brighter than other galaxies recently discovered at similar redshifts z > 10 with JWST. Here, we report new JWST imaging that clearly resolves MACS0647–JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. The brighter larger component “A” is intrinsically very blue ( ÎČ âˆŒ −2.6 ± 0.1), likely due to very recent star formation and no dust, and is spatially extended with an effective radius ∌70 ± 24 pc. The smaller component “B” ( r ∌ 20 −5+8 {}_{-5}^{+8}\, pc) appears redder ( ÎČ âˆŒ −2 ± 0.2), likely because it is older (100–200 Myr) with mild dust extinction ( A _V ∌ 0.1 mag). With an estimated stellar mass ratio of roughly 2:1 and physical projected separation ∌400 pc, we may be witnessing a galaxy merger 430 million years after the Big Bang. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be dissimilar, which is also suggested by the spectral energy distribution fitting, suggesting they formed further apart. We also identify a candidate companion galaxy “C” ∌3 kpc away, likely destined to merge with A and B. Upcoming JWST Near Infrared Spectrograph observations planned for 2023 January will deliver spectroscopic redshifts and more physical properties for these tiny magnified distant galaxies observed in the early universe
    corecore