76 research outputs found

    Non-eutectic phase change materials for cold thermal energy storage

    Get PDF
    Phase change materials provide high-density thermal energy storage and a wide range of temperatures are required to meet different storage applications for cascaded thermal storage systems. Thus, non-eutectic phase change materials, namely aqueous ethylene glycol and ethanol solutions, are investigated in this paper for potential applications in high-grade cold thermal energy storage applications. The aqueous solutions of varying concentrations are characterized by differential scanning calorimetry and thermal response measurements for bulk PCMs. The phase change materials are able to meet a wide range of storage temperatures with no issue of phase separation. Graphene oxide powder of 1 wt.% is added as a stable nano-filler to enhance thermal conductivity and reduce supercooling degrees. Through thermal response measurements, improvements of charging times in the phase change of aqueous ethylene glycol and ethanol solutions are observed.NRF (Natl Research Foundation, S’pore)Published versio

    Strategies for intraoperative management of the trigeminal nerve and long-term follow-up outcomes in patients with trigeminal neuralgia secondary to an intracranial epidermoid cyst

    Get PDF
    BackgroundEpidermoid cysts (ECs) are one of the most common causes of secondary trigeminal neuralgia (TGN). However, most previous studies have primarily focused on whether complete tumor resection was achieved, and few studies have discussed the primary goal of pain relief.ObjectiveThe present study provides intraoperative strategies for trigeminal nerve (TN) management in patients with TGN secondary to an EC and observed long-term follow-up outcomes.MethodsA total of 69 patients with TGN secondary to an EC at our hospitals were included (January 2011–June 2021). The same surgical team performed all surgeries using a retrosigmoid approach. After EC removal, different methods for TN management were used, including microvascular decompression (MVD), sharp capsulectomy, nerve combing and embedded cholesterol crystal excision. The epidemiological, clinical, and surgical data were extracted.ResultsThe total EC removal rate was 92.8% (64/69). All patients achieved initial pain relief postoperatively, and 12 patients (17.4%) experienced varying degrees of hemifacial hypesthesia, which was relieved within 3–6 months. Three patients (4.3%) reported partial pain recurrence within a median follow-up period of 5.5 (0.5–10.5) years, which was relieved completely after low-dose carbamazepine administration.ConclusionThe primary goal of surgical tumor removal for patients with TGN secondary to an EC is relief of the main symptom of tormenting pain. The selection of an appropriate strategy for TN, including MVD, sharp capsulectomy, nerve combing or embedded cholesterol crystal excision, should depend on the patient's situation

    An experimental and numerical method for thermal characterization of phase change materials for cold thermal energy storage

    Get PDF
    This paper seeks to establish a methodology which predicts the phase change duration and this assists the design of an optimized container sizing for cold thermal energy storage systems. The thermal characterization with numerical methods is widely used due to their versatility and low cost when compared to the experimental methods, but, to obtain reasonable results, the numerical model needs to be calibrated and validated with real data. In this work an experimental rig has been designed for phase change materials with low temperature applications. The results, obtained with pure water as PCM, have been used to validate a 1-D numerical model based on the effective capacity method and solved by MATLAB software.NRF (Natl Research Foundation, S’pore)Published versio

    Future Greener Seaports:A Review of New Infrastructure, Challenges, and Energy Efficiency Measures

    Get PDF
    Recently, the application of renewable energy sources (RESs) for power distribution systems is growing immensely. This advancement brings several advantages, such as energy sustainability and reliability, easier maintenance, cost-effective energy sources, and ecofriendly. The application of RESs in maritime systems such as port microgrids massively improves energy efficiency and reduces the utilization of fossil fuels, which is a serious threat to the environment. Accordingly, ports are receiving several initiatives to improve their energy efficiency by deploying different types of RESs based on the power electronic converters. This paper conducts a systematic review to provide cutting-edge state-of-the-art on the modern electrification and infrastructure of seaports taking into account some challenges such as the environmental aspects, energy efficiency enhancement, renewable energy integration, and legislative and regulatory requirements. Moreover, the technological methods, including electrifications, digitalization, onshore power supply applications, and energy storage systems of ports, are addressed. Furthermore, details of some operational strategies such as energy-aware operations and peak-shaving are delivered. Besides, the infrastructure scheme to enhance the energy efficiency of modern ports, including port microgrids and seaport smart microgrids are delivered. Finally, the applications of nascent technologies in seaports are presented

    Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction

    Full text link
    In the past decade graphene has been one of the most studied material for several unique and excellent properties. Due to its two dimensional nature, physical and chemical properties and ease of manipulation, graphene offers the possibility of integration with the exiting semiconductor technology for next-generation electronic and sensing devices. In this context, the understanding of the graphene/semiconductor interface is of great importance since it can constitute a versatile standalone device as well as the building-block of more advanced electronic systems. Since graphene was brought to the attention of the scientific community in 2004, the device research has been focused on the more complex graphene transistors, while the graphene/semiconductor junction, despite its importance, has started to be the subject of systematic investigation only recently. As a result, a thorough understanding of the physics and the potentialities of this device is still missing. The studies of the past few years have demonstrated that graphene can form junctions with 3D or 2D semiconducting materials which have rectifying characteristics and behave as excellent Schottky diodes. The main novelty of these devices is the tunable Schottky barrier height, a feature which makes the graphene/semiconductor junction a great platform for the study of interface transport mechanisms as well as for applications in photo-detection, high-speed communications, solar cells, chemical and biological sensing, etc. In this paper, we review the state-of-the art of the research on graphene/semiconductor junctions, the attempts towards a modeling and the most promising applications.Comment: 85 pages. Review articl

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Plasma immersion ion implantation on polymers

    No full text
    158 p.The focus of this thesis is to achieve plasma based surface modification of polymers. Highly ionized carbon plasma was generated from a filtered cathodic arc source in a vacuum chamber. The use of a highly negative pulse voltage applied on the substrate holder formed a plasma sheath around the substrate holder during the on-pulse. Ions were accelerated in the plasma sheath towards the polymer, thus creating the process: plasma immersion ion implantation (PHI). In this process, ions were implanted up to a depth of about 50 nm and with pulse voltages of between 3 kV and 12 kV. Ion-solids interactions provided both physical and chemical modifications to the modified layer.DOCTOR OF PHILOSOPHY (EEE

    Selection of phase change material for thermal energy storage in solar air conditioning systems

    No full text
    The selection of Phase change materials (PCMs) is crucial in the design of Latent Heat Thermal Energy Storage (LHTES) system in solar air conditioning applications. This study performs a systematic selection procedure of PCMs for LHTES in a typical solar air conditioning system. Comprising prescreening, ranking and objective function examination based on multi-criteria decision making (MCDM) tools, this procedure is able to reflect the system goals of LHTES, as well as to take into account designer's subjectivity. Results indicate the proposed approach to be a highly applicable and efficient tool in the LHTES design process.NRF (Natl Research Foundation, S’pore)Published versio
    corecore