1,369 research outputs found

    SDG measurement and disclosure 3.0: a study of ASX150

    Get PDF
    This report, led by an RMIT University research team and developed in collaboration with CPA Australia, provides an analysis of the Sustainable Development Goals (SDG) disclosure practices in 2020 by the top 150 Australian public-listed companies (ASX150) (by market capitalisation as at 1 July 2019). It is the third report in the ‘SDG Measurement and Disclosure’ by ASX150 series of reports and includes analyses of SDG disclosure trends over a three year period (2018 to 2020). The analysis is based on data from corporate annual sustainability reports, and assesses the extent of SDG awareness, commitment and governance support mechanisms and management approaches to sustainability disclosed by the ASX150. The report aims to build on the evidence gathered over the two preceding years with a view to identifying the performance and emergent strategies towards sustainable development of the sample ASX150. It also lists the Top 20 performing companies in terms of SDG disclosure in the 2020 reporting period

    Uncovering Biological Factors That Regulate Hepatocellular Carcinoma Growth Using Patient‐Derived Xenograft Assays

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162740/3/hep31096.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162740/2/hep31096-sup-0001-Suppinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162740/1/hep31096_am.pd

    CD44v6 high membranous expression is a predictive marker of therapy response in gastric cancer patients

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).In gastric cancer (GC), biomarkers that define prognosis and predict treatment response remain scarce. We hypothesized that the extent of CD44v6 membranous tumor expression could predict prognosis and therapy response in GC patients. Two GC surgical cohorts, from Portugal and South Korea (n = 964), were characterized for the extension of CD44v6 membranous immuno-expression, clinicopathological features, patient survival, and therapy response. The value of CD44v6 expression in predicting response to treatment and its impact on prognosis was determined. High CD44v6 expression was associated with invasive features (perineural invasion and depth of invasion) in both cohorts and with worse survival in the Portuguese GC cohort (HR 1.461; 95% confidence interval 1.002-2.131). Patients with high CD44v6 tumor expression benefited from conventional chemotherapy in addition to surgery (p < 0.05), particularly those with heterogeneous CD44v6-positive and -negative populations (CD44v6_3+) (p < 0.007 and p < 0.009). Our study is the first to identify CD44v6 high membranous expression as a potential predictive marker of response to conventional treatment, but it does not clarify CD44v6 prognostic value in GC. Importantly, our data support selection of GC patients with high CD44v6-expressing tumors for conventional chemotherapy in addition to surgery. These findings will allow better stratification of GC patients for treatment, potentially improving their overall survival.This work was funded by FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020–Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT–Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). This work was also financed by the projects NORTE-01-0145-FEDER-000003 and NORTE-01-0145-FEDER-000029, supported by the Norte Portugal Regional Programme (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); project POCI-01-0145-FEDER-016390 and SAICTPAC/0022/2015, funded by ERDF, POCI, and FCT; project PTDC/CTM-NAN/120958/2010, from FCT; and by project PTDC/BTM-TEC/30164/2017 funded by ERDF funds through the COMPETE 2020–POCI, Portugal 2020, and by FCT. Salary support to G.M.A. by PTDC/BTM-TEC/30164/2017 project; C.P. was supported by the grant SFRH/BD/113031/2015 from FCT.info:eu-repo/semantics/publishedVersio

    Secular trends of antimicrobial resistance of blood isolates in a newly founded Greek hospital

    Get PDF
    BACKGROUND: Antimicrobial resistance is one of the most challenging issues in modern medicine. METHODS: We evaluated the secular trends of the relative frequency of blood isolates and of the pattern of their in vitro antimicrobial susceptibility in our hospital during the last four and a half years. RESULTS: Overall, the data regarding the relative frequency of blood isolates in our newly founded hospital do not differ significantly from those of hospitals that are functioning for a much longer period of time. A noteworthy emerging problem is the increasing antimicrobial resistance of Gram-negative bacteria, mainly Acinetobacter baumannii and Klebsiella pneumoniae to various classes of antibiotics. Acinetobacter baumannii isolates showed an increase of resistance to amikacin (p = 0.019), ciprofloxacin (p = 0.001), imipenem (p < 0.001), and piperacillin/tazobactam (p = 0.01) between the first and second period of the study. CONCLUSION: An alarming increase of the antimicrobial resistance of Acinetobacter baumannii isolates has been noted during our study

    Carbon-cryogel hierarchical composites as effective and scalable filters for removal of trace organic pollutants from water

    Get PDF
    Effective technologies are required to remove organic micropollutants from large fluid volumes to overcome present and future challenges in water and effluent treatment. A novel hierarchical composite filter material for rapid and effective removal of polar organic contaminants from water was developed. The composite is fabricated from phenolic resin-derived carbon microbeads with controllable porous structure and specific surface area embedded in a monolithic, flow permeable, poly(vinyl alcohol) cryogel. The bead-embedded monolithic composite filter retains the bulk of the high adsorptive capacity of the carbon microbeads while improving pore diffusion rates of organic pollutants. Water spiked with organic contaminants, both at environmentally relevant concentrations and at high levels of contamination, was used to determine the purification limits of the filter. Flow through tests using water spiked with the pesticides atrazine (32 mg/L) and malathion (16 mg/L) indicated maximum adsorptive capacities of 641 and 591 mg pollutant/g carbon, respectively. Over 400 bed volumes of water contaminated with 32 mg atrazine/L, and over 27,400 bed volumes of water contaminated with 2 μg atrazine/L, were treated before pesticide guideline values of 0.1 μg/L were exceeded. High adsorptive capacity was maintained when using water with high total organic carbon (TOC) levels and high salinity. The toxicity of water filtrates was tested in vitro with human epithelial cells with no evidence of cytotoxicity after initial washing

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Polygenic risk score is associated with increased disease risk in 52 Finnish breast cancer families

    Get PDF
    The risk of developing breast cancer is increased in women with family history of breast cancer and particularly in families with multiple cases of breast or ovarian cancer. Nevertheless, many women with a positive family history never develop the disease. Polygenic risk scores (PRSs) based on the risk effects of multiple common genetic variants have been proposed for individual risk assessment on a population level. We investigate the applicability of the PRS for risk prediction within breast cancer families. We studied the association between breast cancer risk and a PRS based on 75 common genetic variants in 52 Finnish breast cancer families including 427 genotyped women and pedigree information on similar to 4000 additional individuals by comparing the affected to healthy family members, as well as in a case-control dataset comprising 1272 healthy population controls and 1681 breast cancer cases with information on family history. Family structure was summarized using the BOADICEA risk prediction model. The PRS was associated with increased disease risk in women with family history of breast cancer as well as in women within the breast cancer families. The odds ratio (OR) for breast cancer within the family dataset was 1.55 [95 % CI 1.26-1.91] per unit increase in the PRS, similar to OR in unselected breast cancer cases of the case-control dataset (1.49 [1.38-1.62]). High PRS-values were informative for risk prediction in breast cancer families, whereas for the low PRS-categories the results were inconclusive. The PRS is informative in women with family history of breast cancer and should be incorporated within pedigree-based clinical risk assessment.Peer reviewe

    Vortex Fiber Nulling for Exoplanet Observations: Implementation and First Light

    Full text link
    Vortex fiber nulling (VFN) is a single-aperture interferometric technique for detecting and characterizing exoplanets separated from their host star by less than a diffracted beam width. VFN uses a vortex mask and single mode fiber to selectively reject starlight while coupling off-axis planet light with a simple optical design that can be readily implemented on existing direct imaging instruments that can feed light to an optical fiber. With its axially symmetric coupling region peaking within the inner working angle of conventional coronagraphs, VFN is more efficient at detecting new companions at small separations than conventional direct imaging, thereby increasing the yield of on-going exoplanet search campaigns. We deployed a VFN mode operating in K band (2.02.5 μ2.0{-}2.5~\mum) on the Keck Planet Imager and Characterizer (KPIC) instrument at the Keck II Telescope. In this paper we present the instrument design of this first on-sky demonstration of VFN and the results from on-sky commissioning, including planet and star throughput measurements and predicted flux-ratio detection limits for close-in companions. The instrument performance is shown to be sufficient for detecting a companion 10310^3 times fainter than a 5th5^{\mathrm{th}} magnitude host star in 1 hour at a separation of 50 mas (1.1λ/D\lambda/D). This makes the instrument capable of efficiently detecting substellar companions around young stars. We also discuss several routes for improvement that will reduce the required integration time for a detection by a factor >{>}3.Comment: 26 pages, 5 figures; Accepted to JATI

    The Regenerative Capacity of the Zebrafish Caudal Fin Is Not Affected by Repeated Amputations

    Get PDF
    Background: The zebrafish has the capacity to regenerate many tissues and organs. The caudal fin is one of the most convenient tissues to approach experimentally due to its accessibility, simple structure and fast regeneration. In this work we investigate how the regenerative capacity is affected by recurrent fin amputations and by experimental manipulations that block regeneration. Methodology/Principal Findings: We show that consecutive repeated amputations of zebrafish caudal fin do not reduce its regeneration capacity and do not compromise any of the successive regeneration steps: wound healing, blastema formation and regenerative outgrowth. Interfering with Wnt/ß-catenin signalling using heat-shock-mediated overexpression of Dickkopf1 completely blocks fin regeneration. Notably, if these fins were re-amputated at the non-inhibitory temperature, the regenerated caudal fin reached the original length, even after several rounds of consecutive Wnt/ß-catenin signalling inhibition and re-amputation. Conclusions/Significance: We show that the caudal fin has an almost unlimited capacity to regenerate. Even after inhibition of regeneration caused by the loss of Wnt/ß-catenin signalling, a new amputation resets the regeneration capacity within the caudal fin, suggesting that blastema formation does not depend on a pool of stem/progenitor cells that require Wnt/ßcateni

    An extremely primitive halo star

    Full text link
    The early Universe had a chemical composition consisting of hydrogen, helium and traces of lithium1, almost all other elements were created in stars and supernovae. The mass fraction, Z, of elements more massive than helium, is called "metallicity". A number of very metal poor stars have been found some of which, while having a low iron abundance, are rich in carbon, nitrogen and oxygen. For theoretical reasons and because of an observed absence of stars with metallicities lower than Z=1.5E-5, it has been suggested that low mass stars (M<0.8M\odot, the ones that survive to the present day) cannot form until the interstellar medium has been enriched above a critical value, estimated to lie in the range 1.5E-8\leqZ\leq1.5E-6, although competing theories claiming the contrary do exist. Here we report the chemical composition of a star with a very low Z\leq6.9E-7 (4.5E-5 of that of the Sun) and a chemical pattern typical of classical extremely metal poor stars, meaning without the enrichment of carbon, nitrogen and oxygen. This shows that low mass stars can be formed at very low metallicity. Lithium is not detected, suggesting a low metallicity extension of the previously observed trend in lithium depletion. Lithium depletion implies that the stellar material must have experienced temperatures above two million K in its history, which points to rather particular formation condition or internal mixing process, for low Z stars.Comment: Published on Nature, 2011 Volume 477, Issue 7362, pp. 67-6
    corecore