121 research outputs found

    Comparative genomics of isolates of a pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients

    Get PDF
    Pseudomonas aeruginosa is the main cause of fatal chronic lung infections among individuals suffering from cystic fibrosis (CF). During the past 15 years, particularly aggressive strains transmitted among CF patients have been identified, initially in Europe and more recently in Canada. The aim of this study was to generate high-quality genome sequences for 7 isolates of the Liverpool epidemic strain (LES) from the United Kingdom and Canada representing different virulence characteristics in order to: (1) associate comparative genomics results with virulence factor variability and (2) identify genomic and/or phenotypic divergence between the two geographical locations. We performed phenotypic characterization of pyoverdine, pyocyanin, motility, biofilm formation, and proteolytic activity. We also assessed the degree of virulence using the Dictyostelium discoideum amoeba model. Comparative genomics analysis revealed at least one large deletion (40-50 kb) in 6 out of the 7 isolates compared to the reference genome of LESB58. These deletions correspond to prophages, which are known to increase the competitiveness of LESB58 in chronic lung infection. We also identified 308 non-synonymous polymorphisms, of which 28 were associated with virulence determinants and 52 with regulatory proteins. At the phenotypic level, isolates showed extensive variability in production of pyocyanin, pyoverdine, proteases and biofilm as well as in swimming motility, while being predominantly avirulent in the amoeba model. Isolates from the two continents were phylogenetically and phenotypically undistinguishable. Most regulatory mutations were isolate-specific and 29% of them were predicted to have high functional impact. Therefore, polymorphism in regulatory genes is likely to be an important basis for phenotypic diversity among LES isolates, which in turn might contribute to this strain's adaptability to varying conditions in the CF lung

    Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae

    Get PDF
    The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacteria populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated twelve major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan-genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of eleven populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation

    Personalized Feedback on Staff Dose in Fluoroscopy-Guided Interventions: A New Era in Radiation Dose Monitoring

    Get PDF
    Radiation safety and protection are a key component of fluoroscopy-guided interventions. We hypothesize that providing weekly personal dose feedback will increase radiation awareness and ultimately will lead to optimized behavior. Therefore, we designed and implemented a personalized feedback of procedure and personal doses for medical staff involved in fluoroscopy-guided interventions. Medical staff (physicians and technicians, n = 27) involved in fluoroscopy-guided interventions were equipped with electronic personal dose meters (PDMs). Procedure dose data including the dose area product and effective doses from PDMs were prospectively monitored for each consecutive procedure over an 8-month period (n = 1082). A personalized feedback form was designed displaying for each staff individually the personal dose per procedure, as well as relative and cumulative doses. This study consisted of two phases: (1) 1-5th months: Staff did not receive feedback (n = 701) and (2) 6-8th months: Staff received weekly individual dose feedback (n = 381). An anonymous evaluation was performed on the feedback and occupational dose. Personalized feedback was scored valuable by 76% of the staff and increased radiation dose awareness for 71%. 57 and 52% reported an increased feeling of occupational safety and changing their behavior because of personalized feedback, respectively. For technicians, the normalized dose was significantly lower in the feedback phase compared to the prefeedback phase: [median (IQR) normalized dose (phase 1) 0.12 (0.04-0.50) A mu Sv/Gy cm(2) versus (phase 2) 0.08 (0.02-0.24) A mu Sv/Gy cm(2), p = 0.002]. Personalized dose feedback increases radiation awareness and safety and can be provided to staff involved in fluoroscopy-guided interventions

    A Genome-Wide Survey of Switchgrass Genome Structure and Organization

    Get PDF
    The perennial grass, switchgrass (Panicum virgatum L.), is a promising bioenergy crop and the target of whole genome sequencing. We constructed two bacterial artificial chromosome (BAC) libraries from the AP13 clone of switchgrass to gain insight into the genome structure and organization, initiate functional and comparative genomic studies, and assist with genome assembly. Together representing 16 haploid genome equivalents of switchgrass, each library comprises 101,376 clones with average insert sizes of 144 (HindIII-generated) and 110 kb (BstYI-generated). A total of 330,297 high quality BAC-end sequences (BES) were generated, accounting for 263.2 Mbp (16.4%) of the switchgrass genome. Analysis of the BES identified 279,099 known repetitive elements, >50,000 SSRs, and 2,528 novel repeat elements, named switchgrass repetitive elements (SREs). Comparative mapping of 47 full-length BAC sequences and 330K BES revealed high levels of synteny with the grass genomes sorghum, rice, maize, and Brachypodium. Our data indicate that the sorghum genome has retained larger microsyntenous regions with switchgrass besides high gene order conservation with rice. The resources generated in this effort will be useful for a broad range of applications

    Rapid niche expansion by selection on functional genomic variation after ecosystem recovery

    Get PDF
    It is well recognized that environmental degradation caused by human activities can result in dramatic losses of species and diversity. However, comparatively little is known about the ability of biodiversity to re-emerge following ecosystem recovery. Here, we show that a European whitefish subspecies, the gangfisch Coregonus lavaretus macrophthalmus, rapidly increased its ecologically functional diversity following the restoration of Lake Constance after anthropogenic eutrophication. In fewer than ten generations, gangfisch evolved a greater range of gill raker numbers (GRNs) to utilize a broader ecological niche. A sparse genetic architecture underlies this variation in GRN. Several co-expressed gene modules and genes showing signals of positive selection were associated with GRN and body shape. These were enriched for biological pathways related to trophic niche expansion in fishes. Our findings demonstrate the potential of functional diversity to expand following habitat restoration, given a fortuitous combination of genetic architecture, genetic diversity and selection

    Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains

    Get PDF

    Preadviezen - De toetsing van de wet aan de Grondwet / Toetsing door de rechter van de wet aan de Grondwet

    No full text
    info:eu-repo/semantics/publishe

    A Syst-OMICS approach to ensuring food safety and reducing the economic burden of Salmonellosis

    Get PDF
    The Salmonella Syst-OMICS consortium is sequencing 4,500 Salmonella genomes and building an analysis pipeline for the study of Salmonella genome evolution, antibiotic resistance and virulence genes. Metadata, including phenotypic as well as genomic data, for isolates of the collection are provided through the Salmonella Foodborne Syst-OMICS database (SalFoS), at https://salfos.ibis.ulaval.ca/. Here, we present our strategy and the analysis of the first 3,377 genomes. Our data will be used to draw potential links between strains found in fresh produce, humans, animals and the environment. The ultimate goals are to understand how Salmonella evolves over time, improve the accuracy of diagnostic methods, develop control methods in the field, and identify prognostic markers for evidence-based decisions in epidemiology and surveillance
    • …
    corecore