165 research outputs found

    Columnar Discotic Liquid-Crystalline Oxadiazoles as Electron-Transport Materials

    Get PDF
    A range of discoid species with benzene or triazine cores and three (trialkoxyaryl)oxadiazole arms have been synthesized. 1,3,5-tris{5-[3,4,5-tris(octyloxy)phenyl]-1,3,4-oxadiazol-2-yl}benzene has been studied in detail; it exhibits a columnar discotic liquid-crystalline mesophase between 38 and about 210 °C. The time-of-flight electron mobility at room-temperature varies from about 10^(-3) to 10^(-4) cm^2 V^(-1) s^(-1), indicating these materials may find applications in organic electronics

    Scaling in Small-World Resistor Networks

    Full text link
    We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, l−αl^{-\alpha}. In this case we find that the average effective system resistance diverges for any non-zero value of α\alpha.Comment: 15 pages, 6 figure

    Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique

    Get PDF
    Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 o C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H /air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.Web of Scienc

    The met and unmet health needs for HIV, hypertension, and diabetes in rural KwaZulu-Natal, South Africa: analysis of a cross-sectional multimorbidity survey

    Get PDF
    BACKGROUND: The convergence of infectious diseases and non-communicable diseases in South Africa is challenging to health systems. In this analysis, we assessed the multimorbidity health needs of individuals and communities in rural KwaZulu-Natal and established a framework to quantify met and unmet health needs for individuals living with infectious and non-communicable diseases. METHODS: We analysed data collected between May 25, 2018, and March 13, 2020, from participants of a large, community-based, cross-sectional multimorbidity survey (Vukuzazi) that offered community-based HIV, hypertension, and diabetes screening to all residents aged 15 years or older in a surveillance area in the uMkhanyakude district in KwaZulu-Natal, South Africa. Data from the Vukuzazi survey were linked with data from demographic and health surveillance surveys with a unique identifier common to both studies. Questionnaires were used to assess the diagnosed health conditions, treatment history, general health, and sociodemographic characteristics of an individual. For each condition (ie, HIV, hypertension, and diabetes), individuals were defined as having no health needs (absence of condition), met health needs (condition that is well controlled), or one or more unmet health needs (including diagnosis, engagement in care, or treatment optimisation). We analysed met and unmet health needs for individual and combined conditions and investigated their geospatial distribution. FINDINGS: Of 18 041 participants who completed the survey (12 229 [67·8%] were female and 5812 [32·2%] were male), 9898 (54·9%) had at least one of the three chronic diseases measured. 4942 (49·9%) of these 9898 individuals had at least one unmet health need (1802 [18·2%] of 9898 needed treatment optimisation, 1282 [13·0%] needed engagement in care, and 1858 [18·8%] needed a diagnosis). Unmet health needs varied by disease; 1617 (93·1%) of 1737 people who screened positive for diabetes, 2681 (58·2%) of 4603 people who screened positive for hypertension, and 1321 (21·7%) of 6096 people who screened positive for HIV had unmet health needs. Geospatially, met health needs for HIV were widely distributed and unmet health needs for all three conditions had specific sites of concentration; all three conditions had an overlapping geographical pattern for the need for diagnosis. INTERPRETATION: Although people living with HIV predominantly have a well controlled condition, there is a high burden of unmet health needs for people living with hypertension and diabetes. In South Africa, adapting current, widely available HIV care services to integrate non-communicable disease care is of high priority. FUNDING: Fogarty International Center and the National Institutes of Health, the Bill & Melinda Gates Foundation, the South African Department of Science and Innovation, the South African Medical Research Council, the South African Population Research Infrastructure Network, and the Wellcome Trust. TRANSLATION: For the isiZulu translation of the abstract see Supplementary Materials section

    Time-to-first appropriate shock in patients implanted prophylactically with an implantable cardioverter-defibrillator: data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS).

    Get PDF
    Aims: Data on predictors of time-to-first appropriate implantable cardioverter-defibrillator (ICD) therapy in patients with Brugada Syndrome (BrS) and prophylactically implanted ICD's are scarce. Methods and results: SABRUS (Survey on Arrhythmic Events in BRUgada Syndrome) is an international survey on 678 BrS patients who experienced arrhythmic event (AE) including 252 patients in whom AE occurred after prophylactic ICD implantation. Analysis was performed on time-to-first appropriate ICD discharge regarding patients' characteristics. Multivariate logistic regression models were utilized to identify which parameters predicted time to arrhythmia ≤5 years. The median time-to-first appropriate ICD therapy was 24.8 ± 2.8 months. A shorter time was observed in patients from Asian ethnicity (P < 0.05), those with syncope (P = 0.001), and those with Class IIa indication for ICD (P = 0.001). A longer time was associated with a positive family history of sudden cardiac death (P < 0.05). Multivariate Cox regression revealed shorter time-to-ICD therapy in patients with syncope [odds ratio (OR) 1.65, P = 0.001]. In 193 patients (76.6%), therapy was delivered during the first 5 years. Factors associated with this time were syncope (OR 0.36, P = 0.001), spontaneous Type 1 Brugada electrocardiogram (ECG) (OR 0.5, P < 0.05), and Class IIa indication (OR 0.38, P < 0.01) as opposed to Class IIb (OR 2.41, P < 0.01). A near-significant trend for female gender was also noted (OR 0.13, P = 0.052). Two score models for prediction of <5 years to shock were built. Conclusion: First appropriate therapy in BrS patients with prophylactic ICD's occurred during the first 5 years in 76.6% of patients. Syncope and spontaneous Type 1 Brugada ECG correlated with a shorter time to ICD therapy

    DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    Get PDF
    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works
    • …
    corecore