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Abstract—We report on the Raman contribution to the in-
tensity dependent refractive index in step-index fibers with
germanium doped silica core. ThefR value is found to be
0.157 ± 0.07 for a field weighted germanium concentration
between5 and 25 mol %.

Knowledge about the intensity dependent refractive index
is important within the field of non-linear optics. Therefore, it
is only natural that measurements of the intensity dependent
refractive index have been given significant attention overthe
years [1]–[6]. However, only a few of the reported works
have tried to take into account the Raman contribution to the
intensity dependent refractive index [7]–[9]. The non-linearity
of a given material is commonly modelled as a sum of an
electronic response, a vibrational/rotational response,and an
acoustic response. For silica the electronic response is inthe
order of a fewfs, the vibrational/rotational response is in the
order of a few hundreds offs, and the acoustic response is of
the of order of fewns [10]. When working within the regime
of fs pulses the acoustic response is non existing [10] and
the contribution to the non-linearity is therefore of electronic
and vibrational/rotational origin. This is often modelledwith a
response function given asR (t) = (1− fR) δ (t) + fRhR (t),
wherehR (t) is the Raman response function, the delta func-
tion represents the instantaneous electronic response, and fR
is the ratio between the Raman contribution to the intensity
dependent refractive index and the intensity dependent refrac-
tive index itself [11], [12]. For a pure silica core fiberfR is
reported to be0.18 [7]. This value is often adopted also for
pulse propagation in other silica based fibers. However, this
is questionable as the different dopants influence this ratio.
Here we focus on the ratio,fR, as a function of different
germanium concentrations. This is done by measuring the
intensity dependent refractive index and corresponding Raman
gain spectrum. From the Raman gain spectrum the contribution
from the Raman effect to the intensity dependent refractive
index is calculated, thus it is possible to obtain thefR ratio.

The non-linearity of different fibers is measured with a
self-phase modulation (SPM) based technique [3]. A sketch
of the setup is seen in Fig. 1, the channel separation of the
two PM CW DFB lasers is0.2 nm. The non-linear fiber
paramater is given asγ =

2πnI
2

λAeff
, wherenI

2 is the intensity
dependent refractive index,λ is the wavelength, andAeff

is the effective area [12]. The contribution to the intensity
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Fig. 1. Sketch of the SPM-based setup.
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Fig. 2. Sketch of the setup for the Raman gain measurement.

dependent refractive index from the Raman effect is calculated
following the method from [7] by applying the Kramers-
Kronig relations to the measured Raman gain. The setup for
measuring the Raman gain is seen in Fig. 2. If the Raman
effect is written as a complex refractive index, denoted as
nI
2,R+iκI

2,R, wherenI
2,R is the real part of the Raman complex

refractive index, which contributes to the intensity dependent
refractive index andκI

2,R is the imaginary part, which is related
to absorption and gain. The Raman gain coefficient is given

as gR = −2 2π
λ

κI
2,R

Aeff,R
, whereAeff,R is the effective Raman

area, which takes the changing field overlap with wavelength
into consideration [13]. The SPM-based measurement is done
at wavelength of1550 nm, whereas the Raman measurement
is done with a pump laser at1453 nm. It is assumed that the
intensity dependent refractive index is independent of wave-
length within the considered wavelength region [4]. The fibers
used in this investigation consist of simple step-index fibers,
which have germanium doped silica in the core and a cladding
of pure silica. This is done to avoid other dopant materials such
as fluorine and phosphor to the intensity dependent refractive
index. The intensity dependent refractive index is plottedas



a function of how much germanium the light interacts with,

which is calculated asCge =
∫

∞

0
xge(|F |2)

2
rdr

∫

∞

0
(|F |2)2rdr

, wherer is the

radial coordinate,F is the transverse field distribution of the
electric field, andxge is the molar germanium concentration
at a given point. All of the valuesxge, Aeff , andAeff,R are
calculated from the measured index profile of the fiber. The
resulting intensity dependent refractive indices from theSPM-
based and the Raman measurements are shown in Fig. 3 and
in Fig. 4, respectively.
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Fig. 3. The intensity dependent refractive index from both the electronic
and vibrational/rotational contributions plotted as a function of how much
germanium the light experiences.
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Fig. 4. The intensity dependent refractive index from the vibra-
tional/rotational contributions plotted as a function of how much germanium
the light experiences.

The ratio between the Raman contribution to the intensity
dependent refractive index and the intensity dependent refrac-
tive index itself is calculated from Figs. 3 and 4 and shown
in Fig. 5

ThefR for the measured fibers is seen to be within0.163 to
0.152. The small variations of data points becomes greater in
the calculation of thefR value and the ratio of the data points
seems to have a more step like behaviour, whereas the ratio of
the two linear fits is smoothly degreasing. The ratio of the two
linear fits is decreasing from0.164 to 0.150 with increasing
germanium light interaction, within the shown interval. Inthe
case of a high interaction between the light and germanium the
fR value is0.15 and hence, one would introduce an error of
20% in thefR value, when using the commonly usedfR value
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Fig. 5. The resultingfR ratio from the values of Figs. 3 and 4. ThefR
ratio is plotted as a function of how much germanium the lightexperiences.

of 0.18 reported for a pure silica fiber. This has a significant
impact in any application where the Raman effect plays a key
role as thefR is directly proportional with the strength of the
Raman gain and therefore also with the soliton self-frequency
shift.
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