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Abstract—We report on the Raman contribution to the in- PM‘CW'DFB‘Las_gombinerAmphﬁer
tensity dependent refractive index in step-index fibers wit Attenuator
germanium doped silica core. The fr value is found to be PM-CW-DEB-Laser
0.157 4+ 0.07 for a field weighted germanium concentration Attenuator . PlGe
between5 and 25 mol %.
Knowledge about the intensity dependent refractive index Fowermeter
OSA Powermeter FUT Powermeter

is important within the field of non-linear optics. Therefoit
is only natural that measurements of the intensity dependen Fig. 1. Sketch of the SPM-based setup.
refractive index have been given significant attention dkier
years [1]-[6]. However, only a few of the reported works
have tried to take into account the Raman contribution to the
intensity dependent refractive index [7]—[9]. The noreknity

of a given material is commonly modelled as a sum of an
electronic response, a vibrational/rotational respoasé, an Circulator

Angled fiber cleave

FUT
Broadband source

b Splice f

acoustic response. For silica the electronic response tisein Pump laser o eolator
order of a fewfs, the vibrational/rotational response is in the PM-Fiber L(AY=]
order of a few hundreds d§, and the acoustic response is of 15° Splice

the of order of fewns [10]. When working within the regime Circulator SA

of fs pulses the acoustic response is non existing [10] and
the contribution to the non-linearity is therefore of etecic
and vibrational/rotational origin. This is often modelleith a
response function given & (t) = (1 — fr) d§ (t) + frhr (t), o _
wherehy (t) is the Raman response function, the delta funéependent refractive index from the Raman effect is caledla
tion represents the instantaneous electronic respondef;an following the method from [7] by applying the Kramers-
is the ratio between the Raman contribution to the intensifonig relations to the measured Raman gain. The setup for
dependent refractive index and the intensity dependerdaef Measuring the Raman gain is seen in Fig. 2. If the Raman
tive index itself [11], [12]. For a pure silica core fibg; is effect is written as a complex refractive index, denoted as
reported to be).18 [7]. This value is often adopted also fors, r+iks, . Wheren;  is the real part of the Raman complex
pulse propagation in other silica based fibers. Howeves, tefractive index, which contributes to the intensity degemt
is questionable as the different dopants influence thi. ratfefractive index anet 2, 18 the imaginary part, which is related
Here we focus on the ratiofz, as a function of different to absorption anId gain. The Raman gain coefficient is given
germanium concentrations. This is done by measuring thegr = 22/(’A ZfRR where A ¢ r is the effective Raman
intensity dependent refractive index and correspondingda area, which takes the changing field overlap with wavelength
gain spectrum. From the Raman gain spectrum the contributiato consideration [13]. The SPM-based measurement is done
from the Raman effect to the intensity dependent refractiae wavelength ofi550 nm, whereas the Raman measurement
index is calculated, thus it is possible to obtain jfieratio. is done with a pump laser att53 nm. It is assumed that the
The non-linearity of different fibers is measured with @ntensity dependent refractive index is independent ofewvav
self-phase modulation (SPM) based technique [3]. A sketngth within the considered wavelength region [4]. Therbe
of the setup is seen in Fig. 1, the channel separation of theed in this investigation consist of simple step-indexrfibe
two PM CW DFB lasers i).2 nm. The non-linear fiber which have germanium doped silica in the core and a cladding
paramater is given as = ,\Z)anzf wheren] is the intensity of pure silica. This is done to avoid other dopant materiaths
dependent refractive index is the wavelength, andl.;¢ as fluorine and phosphor to the intensity dependent refcti
is the effective area [12]. The contribution to the intepsitindex. The intensity dependent refractive index is plotisd

Fig. 2. Sketch of the setup for the Raman gain measurement.
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T 23e20 SPMdatapoint % role as thefr is directly proportional with the strength of the
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