48 research outputs found

    The impact of routine outcome measurement on treatment processes in community mental health care: approach and methods of the MECCA study

    Get PDF
    Three issues characterise the background to the MECCA study: A) Throughout Europe, most patients with severe forms of psychotic disorders are cared for in the community. The challenge now is to make processes in community mental health care more effective. B) There are widespread calls to implement regular outcome measurement in routine settings. This, however, is more likely to happen, if it provides a direct benefit to clinicians and patients. C) Whilst user involvement is relatively ?" easy to achieve on a political level, new mechanisms may have to be established to make the views of patients feed into individual treatment decisions. The MECCA study is a cluster randomised controlled trial following the same protocol in community mental health teams in six European countries. In the experimental group, patients' subjective quality of life, treatment satisfaction and wishes for different or additional help are assessed in key worker-patient meetings every two months and intended to inform the therapeutic dialogue and treatment decisions. The trial tests the hypothesis that the intervention - as compared to current best standard practice - will lead to a better outcome in terms of quality of life and other criteria in patients with psychotic disorders over a one year period. This more favourable outcome is assumed to be mediated through different treatment input based on more appropriate joint decisions or a more positive therapeutic relationship in line with a partnership model of care or both. Moreover, the study will hopefully reveal new insights into how therapeutic processes in community mental health care work and how they can be optimise

    Gadoxetic acid uptake as a molecular imaging biomarker for sorafenib resistance in patients with hepatocellular carcinoma: a post hoc analysis of the SORAMIC trial

    Get PDF
    PURPOSE Gadoxetic acid uptake on hepatobiliary phase MRI has been shown to correlate with ß-catenin mutation in patients with HCC, which is associated with resistance to certain therapies. This study aimed to evaluate the prognostic value of gadoxetic acid uptake on hepatobiliary phase MRI in patients with advanced HCC receiving sorafenib. METHODS 312 patients with available baseline hepatobiliary phase MRI images received sorafenib alone or following selective internal radiation therapy (SIRT) within SORAMIC trial. The signal intensity of index tumor and normal liver parenchyma were measured on the native and hepatobiliary phase MRI images, and relative tumor enhancement higher than relative liver enhancement were accepted as high gadoxetic acid uptake, and its prognostic value was assessed using univariate and multivariate Cox proportional hazard models. RESULTS The median OS of the study population was 13.4 (11.8-14.5) months. High gadoxetic acid uptake was seen in 51 (16.3%) patients, and none of the baseline characteristics was associated with high uptake. In univariate analysis, high gadoxetic acid uptake was significantly associated with shorter overall survival (10.7 vs. 14.0~months, p = 0.005). Multivariate analysis confirmed independent prognostic value of high gadoxetic acid uptake (HR, 1.7 1.21-2.3, p = 0.002), as well as Child-Pugh class (p = 0.033), tumor diameter (p = 0.002), and ALBI grade (p = 0.015). CONCLUSION In advanced HCC patients receiving sorafenib (alone or combined with SIRT), high gadoxetic acid uptake of the tumor on pretreatment MRI, a surrogate of ß-catenin mutation, correlates with shorter survival. Gadoxetic acid uptake status might serve in treatment decision-making process

    Helping alliance and unmet needs in routine care of people with severe mental illness across Europe: a prospective longitudinal multicenter study

    Get PDF
    The helping alliance (HA) refers to the collaborative bond between patient and therapist including shared goals and tasks. People with severe mental illness have a complex mixture of clinical and social needs. Using mixed-effects regression, this study examined in 588 people with severe mental illness whether an increase in the HA is associated with fewer unmet needs over time, and whether change in the HA precedes change in unmet needs. It was found that a reduction of unmet needs was slower in patients with higher HA (B=0.04, p<.0001) only for patient-rated measures. Improvement in both patient-rated and staff-rated HA over time was associated with fewer subsequent patient- (B=-0.10, p<0.0001) and staff-rated (B=-0.08, p=0.0175) unmet needs. With positive changes in the HA preceding fewer unmet needs, findings provide further evidence for a causal relationship between alliance and outcome in the treatment of people with severe mental illness

    Clinical Decision Making and Outcome in Routine Care for People with Severe Mental Illness (CEDAR): Study protocol

    Get PDF
    BACKGROUND: A considerable amount of research has been conducted on clinical decision making (CDM) in short-term physical conditions. However, there is a lack of knowledge on CDM and its outcome in long-term illnesses, especially in care for people with severe mental illness. METHODS/DESIGN: The study entitled "Clinical decision making and outcome in routine care for people with severe mental illness" (CEDAR) is carried out in six European countries (Denmark, Germany, Hungary, Italy, Switzerland and UK). First, CEDAR establishes a methodology to assess CDM in people with severe mental illness. Specific instruments are developed (and psychometric properties established) to measure CDM style, key elements of CDM in routine care, as well as CDM involvement and satisfaction from patient and therapist perspectives. Second, these instruments are being put to use in a multi-national prospective observational study (bimonthly assessments during a one-year observation period; N = 560). This study investigates the immediate, short- and long-term effect of CDM on crucial dimensions of clinical outcome (symptom level, quality of life, needs) by taking into account significant variables moderating the relationship between CDM and outcome. DISCUSSION: The results of this study will make possible to delineate quality indicators of CDM, as well as to specify prime areas for further improvement. Ingredients of best practice in CDM in the routine care for people with severe mental illness will be extracted and recommendations formulated. With its explicit focus on the patient role in CDM, CEDAR will also contribute to strengthening the service user perspective. This project will substantially add to improving the practice of CDM in mental health care across Europe. TRIAL REGISTER: ISRCTN75841675

    Modeling Brain Resonance Phenomena Using a Neural Mass Model

    Get PDF
    Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect

    Neuropeptides as potential modulators of behavioral transitions in the ant Cataglyphis nodus

    No full text
    Age‐related behavioral plasticity is a major prerequisite for the ecological success of insect societies. Although ecological aspects of behavioral flexibility have been targeted in many studies, the underlying intrinsic mechanisms controlling the diverse changes in behavior along the individual life history of social insects are not completely understood. Recently, the neuropeptides allatostatin‐A, corazonin, and tachykinin have been associated with the regulation of behavioral transitions in social insects. Here, we investigated changes in brain localization and expression of these neuropeptides following major behavioral transitions in Cataglyphis nodus ants. Our immunohistochemical analyses in the brain revealed that the overall branching pattern of neurons immunoreactive (ir) for the three neuropeptides is largely independent of the behavioral stages. Numerous allatostatin‐A‐ and tachykinin‐ir neurons innervate primary sensory neuropils and high‐order integration centers of the brain. In contrast, the number of corazonergic neurons is restricted to only four neurons per brain hemisphere with cell bodies located in the pars lateralis and axons extending to the medial protocerebrum and the retrocerebral complex. Most interestingly, the cell‐body volumes of these neurons are significantly increased in foragers compared to freshly eclosed ants and interior workers. Quantification of mRNA expression levels revealed a stage‐related change in the expression of allatostatin‐A and corazonin mRNA in the brain. Given the presence of the neuropeptides in major control centers of the brain and the neurohemal organs, these mRNA‐changes strongly suggest an important modulatory role of both neuropeptides in the behavioral maturation of Cataglyphis ants

    The brain of Cataglyphis ants: Neuronal organization and visual projections

    No full text
    Cataglyphis ants are known for their outstanding navigational abilities. They return to their inconspicuous nest after far‐reaching foraging trips using path integration, and whenever available, learn and memorize visual features of panoramic sceneries. To achieve this, the ants combine directional visual information from celestial cues and panoramic scenes with distance information from an intrinsic odometer. The largely vision‐based navigation in Cataglyphis requires sophisticated neuronal networks to process the broad repertoire of visual stimuli. Although Cataglyphis ants have been subjected to many neuroethological studies, little is known about the general neuronal organization of their central brain and the visual pathways beyond major circuits. Here, we provide a comprehensive, three‐dimensional neuronal map of synapse‐rich neuropils in the brain of Cataglyphis nodus including major connecting fiber systems. In addition, we examined neuronal tracts underlying the processing of visual information in more detail. This study revealed a total of 33 brain neuropils and 30 neuronal fiber tracts including six distinct tracts between the optic lobes and the cerebrum. We also discuss the importance of comparative studies on insect brain architecture for a profound understanding of neuronal networks and their function

    Untersuchungsanlage

    No full text

    Neuroanatomical correlates of mobility: Sensory brain centres are bigger in winged than in wingless parthenogenetic pea aphid females

    No full text
    Many aphid species reproduce parthenogenetically throughout most of the year, with individuals having identical genomes. Nevertheless, aphid clones display a marked polyphenism with associated behavioural differences. Pea aphids (Acyrthosiphon pisum), when crowded, produce winged individuals, which have a larger dispersal range than wingless individuals. We examined here if brain structures linked to primary sensory processing and high-order motor control change in size as a function of wing polyphenism. Using micro-computing tomography (micro-CT) scans and immunocytochemical staining with anti-synapsin antibody, we reconstructed primary visual (optic lobes) and olfactory (antennal lobes) neuropils, together with the central body of winged and wingless parthenogenetic females of A. pisum for volume measurements. Absolute neuropil volumes were generally bigger in anti-synapsin labelled brains compared to micro-CT scans. This is potentially due to differences in rearing conditions of the used aphids. Independent of the method used, however, winged females consistently had larger antennal lobes and optic lobes than wingless females in spite of a larger overall body size of wingless compared to winged females. The volume of the central body, on the other hand was not significantly different between the two morphs. The larger primary sensory centres in winged aphids might thus provide the neuronal substrate for processing different environmental information due to the increased mobility during flight
    corecore