6 research outputs found

    Effectiveness of extended shutdown measures during the ´Bundesnotbremse´ introduced in the third SARS-CoV-2 wave in Germany

    No full text
    A third SARS-CoV-2 infection wave has affected Germany from March 2021 until April 24th, until the ´Bundesnotbremse´ introduced nationwide shutdown measures. The ´Bundesnotbremse´ is the technical term which was used by the German government to describe nationwide shutdown measures to control the rising infection numbers. These measures included mainly contact restrictions on several level. This study investigates which effects locally dispersed pre- and post-´Bundesnotbremse´ measures had on the infection dynamics. We analyzed the variability and strength of the rates of the changes of weekly case numbers considering different regions, age groups, and contact restrictions. Regionally diverse measures slowed the rate of weekly increase by about 50% and about 75% in regions with stronger contact restrictions. The 'Bundesnotbremse' induced a coherent reduction of infection numbers across all German federal states and age groups throughout May 2021. The coherence of the infection dynamics after the 'Bundesnotbremse' indicates that these stronger measures induced the decrease of infection numbers. The regionally diverse non-pharmaceutical interventions before could only decelerate further spreading, but not prevent it alone

    Optimal Placement of Origins for DNA Replication

    Get PDF
    DNA replication is an essential process in biology and its timing must be robust so that cells can divide properly. Random fluctuations in the formation of replication starting points, called origins, and the subsequent activation of proteins lead to variations in the replication time. We analyse these stochastic properties of DNA and derive the positions of origins corresponding to the minimum replication time. We show that under some conditions the minimization of replication time leads to the grouping of origins, and relate this to experimental data in a number of species showing origin grouping.Comment: 5 pages, 3 figure

    A Matter of Life or Death: Modeling DNA Damage and Repair in Bacteria

    Get PDF
    DNA damage is a hazard all cells must face, and evolution has created a number of mechanisms to repair damaged bases in the chromosome. Paradoxically, many of these repair mechanisms can create double-strand breaks in the DNA molecule which are fatal to the cell. This indicates that the connection between DNA repair and death is far from straightforward, and suggests that the repair mechanisms can be a double-edged sword. In this report, we formulate a mathematical model of the dynamics of DNA damage and repair, and we obtain analytical expressions for the death rate. We predict a counterintuitive relationship between survival and repair. We can discriminate between two phases: below a critical threshold in the number of repair enzymes, the half-life decreases with the number of repair enzymes, but becomes independent of the number of repair enzymes above the threshold. We are able to predict quantitatively the dependence of the death rate on the damage rate and other relevant parameters. We verify our analytical results by simulating the stochastic dynamics of DNA damage and repair. Finally, we also perform an experiment with Escherichia coli cells to test one of the predictions of our model
    corecore