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Optimal Placement of Origins for DNA Replication
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DNA replication is an essential process in biology and its timing must be robust so that cells
can divide properly. Random fluctuations in the formation of replication starting points, called
origins, and the subsequent activation of proteins lead to variations in the replication time. We
analyse these stochastic properties of DNA and derive the positions of origins corresponding to the
minimum replication time. We show that under some conditions the minimization of replication
time leads to the grouping of origins, and relate this to experimental data in a number of species
showing origin grouping.

PACS numbers: 87.10.Ca, 87.14.gk, 87.16.Sr

The replication of the DNA content of a cell is one of
the most important processes in living organisms. It en-
sures that the information needed to synthesize proteins
and cellular components is passed on to daughter cells in
a robust and timely fashion. Replication takes place dur-
ing the S-phase of the cell cycle, and it starts from specific
locations in the chromosome called origins. In order to
function in a particular round of the cell cycle, possible
origin locations (loci) must undergo a sequence of bind-
ing events before S-phase starts. This culminates in the
clamping of one or more pairs of ring-shaped Mcm2-7
molecules around the DNA; this is known as licensing.
Below we denote a pair of Mcm molecules as pMcm.
Features of human replication have been studied with
the help of the yeast S. cerevisiae and X. laevis frog em-
bryos. In S. cerevisiae licensing is only possible at a set of
specific points in each chromosome, characterized by the
presence of specific DNA sequences, whereas in X. lae-

vis embryos the licensing proteins can bind at virtually
any location in the genome [1]. When a licensed locus
activates in S-phase, two replication forks are created at
the origin, and they move in opposite directions with ap-
proximately constant speed, duplicating the DNA as they
travel through the chromosome [Fig. 1(a)]. Both origin
licensing and origin activation time are stochastic events,
since they result from molecular processes involving low-
abundance species. In X. laevis, both the loci that are
licensed and licensed loci selected for activation vary ran-
domly from cell to cell, whereas in S. cerevisiae each of
the fixed loci has a certain probability of being activated
in any given cell — the competence — which reflects the
fraction of cells in a population in which that locus has
had time to be licensed before the S-phase starts [2].

The total time it takes to replicate a cell’s DNA — the
replication time — is a quantity of crucial importance
for biology, since it is clearly an evolutionary advantage
for replication to be rapid as it affects the minimum time
required for cells to duplicate. The location of the origins

is one of the crucial factors determining the replication
time of cells, and it is reasonable to expect that the loci
have been selected by evolution such that the replication
time is minimized. There are a number of recent the-
oretical and modeling works on the dynamics of DNA
replication (reviewed in [3]). Previous theoretical works
on S. cerevisiae have used the experimentally determined
loci as given parameters, without attempting to under-
stand why the origins are located where they are [2, 4–
6]. Inspection of the loci on a S. cerevisiae genome map
shows groups of two or three very close origins which are
very prominent in most chromosomes [7]. There is also
experimental evidence for grouping in X. laevis, where
origins seem to be distributed with groups of 5 to 10
pMcms [8–10].Most of the existing models of replication
in X. laevis [9, 11–15] – an exception is [16] – assume the
origins to be random and independent of each other, and
so they cannot explain pMcm grouping or the observed
maximum-spacing of 25 kilobases (kb) between adjacent
origins [9].

In this Letter, we use a simplified mathematical model
of the DNA replication process to determine the opti-
mal origin location in a chromosome which leads to the
shortest average replication time, and how this optimal
placement depends on parameters such as the origin com-
petences and the width of the activation time probability
distribution. We show that contrary to what one might
expect, in many cases the replication time is minimized
by placing origins close together in groups like those ob-
served in real chromosomes. This suggests that origin
locations have been selected to minimize the replication
time. Analysis of our model reveals that grouping is
favored for low-competence origins and for origins with
large stochastic fluctuations in their activation time. The
reason for this is that if origins have an appreciable like-
lihood of either failing to activate (low competence) or
of taking a very long time to activate, grouping origins
together helps reduce the risk of large regions of the chro-
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mosome not being replicated on time. If the origins are
highly competent and have a well-defined activation time,
it is optimal to have maximal coverage and distribute the
origins evenly on the chromosome. We further show that
there is an abrupt transition in the optimal configuration
of origins, from isolated to grouped, as the locus’ compe-
tence decreases (in S. cerevisiae), and also as the width
of the activation time distribution increases. We give
an intuitive explanation of this phenomenon, and argue
that it is robust, and independent of any particular de-
tails of the model. These results are derived analytically,
and tested through numerical simulations. We also com-
pare quantitatively the predictions of our theory with the
available experimental data for both S. cerevisiae and X.

laevis, and find that they match well.

We start by analyzing the case of stochasticity in li-
censing of fixed origin loci, as in S. cerevisiae. DNA is
modeled as a one-dimensional segment of unit length,
and we for simplicity consider only two loci in the chro-
mosome. The two origin loci have competences p1 and
p2 — these are the probabilities that origins have been
licensed and can therefore start replication forks. We
initially make the assumption that origins activate at a
well-defined time (which we set to t = 0). All replication
forks travel at the same unit speed across the DNA. We
consider the geometry depicted in Fig. 1(a); d1 (d2) is
the distance from the left (right) end of the chromosome
to the left (right) most locus. If both loci fail to be li-
censed we postulate that replication will eventually take
place anyway, with a replication time T0 — for example,
we can imagine that stretch of DNA will be replicated
by forks originating from origins outside of the region we
are considering. Our results do not depend on T0, as will
be clear shortly; this is just a mathematical device to
prevent us dealing with infinite replication times.

If only one of the loci fails to become licensed, the
replication time depends on the time it takes for the fork
to reach the furthest end of the segment, so Td1

= 1− d1
for locus 1 and Td2

= 1 − d2 for locus 2. If both
loci have been licensed the replication time Td1,d2

=
max{d1, d2, (1 − d1 − d2)/2} is defined by the longest
time for a fork to reach the end of the segment or for
two forks to collide. It can be shown that the replica-
tion time of an asymmetric placement of loci is never
less than a corresponding symmetric configuration (that
is, with d1 = d2). Therefore we consider only sym-
metrical locus placements, and use d1 = d2 = d with
0 ≤ d ≤ 1/2. The average replication time is then given
by Trep(d) = (1 − p1)(1 − p2)T0 + (p1 + p2 − 2p1p2)(1 −
d) + p1p2 max{d, (1− 2d)/2}.

This is a piecewise-linear function with discontinuities
at d = 1/4 and 1/2. Hence, Trep can only have a min-
imum found at d = 0, d = 1/2, or at 1/4. Placing
loci at the end of a segment (d = 0) is obviously not
a minimum of Trep. The replication times for d = 1/4
and 1/2 are Trep(d = 1/2) = (1 − p1)(1 − p2)T0 +

(p1 + p2 − p1p2) /2 and Trep(d = 1/4) = (1 − p1)(1 −
p2)T0 + (3p1 + 3p2 − 5p1p2) /4. We conclude that the
two loci group together (d = 1/2) to achieve minimum
replication time if Trep(d = 1/2) < Trep(d = 1/4), which
leads to the condition

p2 <
p1

3p1 − 1
. (1)

Notice here that T0 drops out. The inequality Eq. (1)
defines two regions on the p1–p2 plane, corresponding to
grouped or isolated loci being optimum. This is shown
in Fig. 1(b), where this analytical result is confirmed by
stochastic simulations. The region above the curve cor-
responds to competences for which Trep is minimized by
loci being apart (d = 1/4) and below the curve for or-
ganising these in a group (d = 1/2). In general, if one of
the loci has low competence grouping gives the minimum
Trep. In fact, it can be shown that if one of the loci has a
competence lower than 50%, grouping is the optimal sit-
uation regardless of the competence of the other — even
if the other is close to 100% competent.

For the case of equal competences, p1 = p2 = p, the
grouped configuration is optimal if p < 2/3. We ran
a numerical optimization algorithm (using genetic algo-
rithms [17]) to find the loci corresponding to the least
Trep for a range of p; these results are shown in Fig. 1(c).
The same transition also takes place for non-identical val-
ues of p1 and p2 — whenever one crosses from the dark
to the light regions of Fig. 1(b).

The above results may seem at first quite counter-
intuitive; one might expect that the configuration with
the least replication time would correspond to isolated
loci (d = 1/4). However, if the origins have a signifi-
cant chance of failing to activate, this configuration would
mean that often one side of the chromosome would have
to wait for a fork which originated at the origin on the
other site to replicate it, therefore increasing Trep. So in
the case of low competences, it becomes advantageous to
have both loci centered, which is near any point in the
chromosome. This explains the condition for grouping if
p < 2/3.

In reality eukaryotic chromosomes have more than two
loci [3], so next we investigate the case of a chromosome
on which there are many loci and examine the conditions
under which it becomes favorable to have isolated origin
loci compared to groups. In this analysis we will assume
for simplicity that the loci all have identical competence.
We consider a group of loci as one single locus with an
effective competence peff. For a group consisting of m
loci peff is the competence that at least one locus will be
licensed there, and is given by peff = 1 − (1 − p)m. We
assume that one large group of n identical loci breaks
up into two groups of equal size, each consisting of n/2
loci. A locus organized with others in a group of size
m = n/2 rather than with n loci will give minimum
Trep, as long as the locus’ competence is less than its
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FIG. 1. (color online). (a) Coordinate system for origin loci
with d1, d2 being the distance from the left- or right-end of
the chromosome, respectively. x is the position coordinate
along the chromosome. Replication forks travel at a speed v
away from the origins. The grey regions show the replicated
DNA at time t. (b) Simulation results, showing optimal loci
to achieve minimal Trep for 2 loci with different competences,
are shown for p1-p2 combinations on a lattice grid. Color
indicates d1, d2 = 1/2 (beige) or d1, d2 = 1/4 (brown). The
two regimes are separated by a coexistence line matched by
the condition Eq. (1) in red. (c) Optimal position of 2 loci
with respect to their competence p to minimize the replication
time Trep (circles) and p = 2/3 (dashed line).

critical probability pc, given by peff = 2/3, which yields
pc = 1−1/ n

√
9. Figure 2(a) confirms our analytical result

showing the value of pc for increasing group sizes in our
simulations. These results clearly show that large groups
of many highly competent loci are unfavorable, but that
groups tend to form for low-competence loci.

Our hypothesis is that selective pressure has influenced
the position of origin loci through the minimization of the
replication time. We show in Fig. 2(b) locus competence
and location data for yeast chromosome VI, which has
been studied extensively [2, 18]. Competences cannot be
measured for all loci (in white), because either they are
too close to the end of the chromosome or to an adjacent
locus. We performed a search for the optimal position
for the loci in the region with known competences us-
ing a genetic algorithm [17]. We remark that there is an
identifiability problem as all strong loci have p ∼ 90%
and we therefore constrained the ordering during the op-
timization. Although in this result we do not consider
inter-origin variations in the origin activation time, the
predicted locus distribution from these simulations bears
a good resemblance to the actual spacing with a score of
F = 0.11 [19]; in particular we recover the group in the
middle, in which an origin locus with 58% competence is
placed next to one with 88% competence. Even multiple
repeats of the optimisation algorithm produce minimum
Trep solutions which have on average F = 0.12.

The above discussion focused on the case of pre-defined
loci in yeast, and ignored additional noise such as the
variation in origin activation time. We show in Fig. 3(d)
that the previous pattern of origin grouping is preserved
in the two-origin model with stochastic variation in origin
activation time. Grouping is important for swift replica-

FIG. 2. (color online). (a) Probability at which groups sepa-
rate pc vs. loci/group n. Shown are simulations (circles) and
analytical prediction for pc = 1− 1/ n

√
9 (line). (b) Distribu-

tion of origin loci on yeast chromosome VI with known (grey)
and unknown competences [2, 18]. The distribution results
from our simulation in search for minimum Trep (only grey
origins considered). The group in the middle of the chromo-
some with a low and highly competent locus was recovered.

tion under conditions of low competence and large noise
which we will explain in the remainder of this letter.

We now examine the case of stochastic activation time
for X. laevis embryos as a model organism. Unlike loci in
yeast, any DNA locus in an X. laevis embryo is capable
of binding with pMcm to become an origin. Surprisingly,
biologists find roughly equally-spaced groups of 5–10 pM-
cms separated by approximately 10 kb [8–10]. We will
use the same approach as above, but now with respect to
stochasticity in the replication time. In this case, an “ori-
gin” is defined as a locus where at least one pMcm has
bound to it, and so it corresponds to 100% competent
locus in the notation we have used so far. It is well ac-
cepted by biologists, however, that origin activation time
is stochastic. For simplicity we assume that the pMcms
at an origin can activate with uniform probability at any
time within a window which has a lower boundary at
t0 = 0 min and an upper at tb, which is at maximum the
length of an S-phase (20 min). In addition, pMcms are
assumed to be all identical with the same activation prob-
ability distribution (standard deviation σ = tb/

√
12).

The expectation is that we will again see a transition of
the optimal configuration from isolated pMcms to groups
as σ increases; this is akin to varying competence in our
previous scenario. We test this prediction using the two-
origin model with one pMcm bound to one origin; we find
numerically the optimal (minimum Trep) positions for the
origins as a function of σ. The results are presented in
Fig. 3(a). We again use a segment of unit length and
forks progress at unit speed of v = 1. We observe a sharp
transition at σ ≈ 0.25, above which it is best to place
both origins in the middle of the segment, as observed
in the case with varying competence. A minor difference
between this case and the previous one is that for σ <
0.25, the optimal location of the origins is not constant.

We now apply this model for more origins and pM-
cms, using realistic parameters so that we can relate the
results to what is experimentally known about X. lae-
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FIG. 3. (color online). (a) Origin position x so that Trep for 2
pMcms is minimal on a segment of unit length, when the stan-
dard deviation σ for their activation time increases. (b) Inset:
Trep as a function of σ for realistic parameters as given in the
text. Origins are distributed in 4 equally-spaced groups of 16
pMcms (blue); 8 groups of 8 pMcms (green); 16 groups of 4
pMcms (red); 32 groups of 2 pMcms (cyan); 64 single pMcms
(magenta); 64 pMcms placed randomly (black). Main: zoom
around realistic σ ∼ 8 min. For 6 < σ < 20 min minimal Trep

is achieved for groups of 8 pMcms. (c) Center-center distri-
bution from 3 experiments [9] (squares) and from simulations
5 min after replication started. The simulation is position-
ing groups of 4 pMcms every 6.3 kb (solid line), groups of
8 pMcms every 12.5 kb (circles), or all randomly (crosses).
A small random amount was added to the group location of
fixed distances which was picked from a Gaussian distribu-
tion with σ ∼ 16% of group distances. The pMcm/length
ratio was fixed [cf. (b)]. (d) Phase diagram of the two-origin
model to minimize replication time with changing competence
and increasing the σ. Color indicates origin position relative
to chromosome ends d1, d2 = 1/2 (beige) or d1, d2 = 1/4
(brown).

vis’ pMcm distribution. We model a stretch of DNA
of size 100 kb and v = 1 kb/min [20]. To determine
whether the minimum-replication-time configuration re-
quires pMcm grouping, we distributed 64 pMcms in total,
i.e. that there is on average 1/1.5 pMcm/kb as found in
nature [8]. The pMcms are then placed in 64/n groups
of n ∈ {1, 2, 4, 8, 16} origins, so that the origins are uni-
formly distributed through the 100 kb chromosome, or
completely random. Other authors have identified σ to
be 6–10 min in X. laevis [13, 21] as well as in S. cere-

visiae [2, 5, 20, 22]. Our results [Fig. 3(b)] indicate that
grouping with an equal spacing of up to 12.5 kb achieves
precise and fast DNA synthesis before the end of S-phase
(20 min) for σ within these limits. We also find that
8 groups of 8 pMcms gives the advantage of a 1.1 min
quicker Trep than using random loci; even when the num-
ber of pMcms at these 8 groups varies, a quicker Trep is
achieved (data not shown). Grouping pMcms also pro-
tects the overall replication process against fluctuations
from one round of the cell cycle to another; a similar
problem is discussed in [14]. This is because one initia-
tion event at an origin is sufficient to activate replication

forks.

One might expect that in a natural environment there
would not be strict equal spacing of groups. We now relax
our previous assumption by taking evenly-spaced groups
and perturb the location of each group by a small ran-
dom amount drawn from a Gaussian distribution. The
introduction of such variation allows us to compare our
simulation with available experimental data of replicated
genomic regions, which were captured as center-center
distances at around 5 min after the onset of replication
(cf. [9]). Figure 3(c) shows that our result is in agreement
with the current understanding of the biological commu-
nity, i.e. groups of 5-10 pMcms about every 10 kb. This
may be achieved by a regulation of pMcm-loading pro-
teins, whose affinity to bind decreases around existing
origins [23, 24]. Although a random placement repre-
sents the data similarly well, Trep remains smaller in this
case where the origin groups are not equally-spaced as
seen before [cf. Figure 3(b)]. This shows that group-
ing of origins remains favorable even in a more general
setting [Fig. 3(d)].
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