579 research outputs found

    Comparison of Intravenous Medetomidine and Medetomidine/Ketamine for Immobilization of Free-Ranging Variable Flying Foxes (Pteropus hypomelanus)

    Get PDF
    Medetomidine (0.03 mg/kg) and medetomidine/ketamine (0.05/5.0 and 0.025/2.5 mg/kg), administered by intravenous injection, were evaluated for short-term immobilization of wild-caught variable flying foxes (Pteropus hypomelanus). Medetomidine alone produced incomplete chemical restraint and a stressful, prolonged induction. Both ketamine/medetomidine doses produced a smooth induction and complete immobilization. The combined medetomidine/ketamine dose of 0.025/2.5 mg/kg produced a rapid induction (232±224 sec) with minimal struggling and vocalization, a complete and effective immobilization period, and tended to lead to a faster and better quality recovery than medetomidine alone or a higher dose of medetomidine and ketamine (0.05/5.0 mg/kg), thus reducing holding time and permitting an earlier release of the bat back into the wild

    The Effect of Differential Limb Magnification on Abundance Analysis of Microlensed Dwarf Stars

    Get PDF
    Finite source effects can be important in observations of gravitational microlensing of stars. Near caustic crossings, for example, some parts of the source star will be more highly magnified than other parts. The spectrum of the star is then no longer the same as when it is unmagnified, and measurements of the atmospheric parameters and abundances will be affected. The accuracy of abundances measured from spectra taken during microlensing events has become important recently because of the use of highly magnified dwarf stars to probe abundance ratios and the abundance distribution in the Galactic bulge. In this paper, we investigate the effect of finite source effects on spectra by using magnification profiles motivated by two events to synthesize spectra for dwarfs between 5000K to 6200K at solar metallicity. We adopt the usual techniques for analyzing the microlensed dwarfs, namely, spectroscopic determination of temperature, gravity, and microturbulent velocity, relying on equivalent widths. We find that ignoring the finite source effects for the more extreme case results in errors in Teff < 45K, in log g of <0.1 dex and in microturbulent velocity of <0.1 km/s. In total, changes in equivalent widths lead to small changes in atmospheric parameters and changes in abundances of <0.06 dex, with changes in [FeI/H] of <0.03 dex. For the case with a larger source-lens separation, the error in [FeI/H] is <0.01 dex. This latter case represents the maximum effect seen in events whose lightcurves are consistent with a point-source lens, which includes the majority of microlensed bulge dwarfs published so far.Comment: 11 pages, 11 figures, submitted to Ap

    Testing the Asteroseismic Mass Scale Using Metal-Poor Stars Characterized with APOGEE and Kepler

    Get PDF
    Fundamental stellar properties, such as mass, radius, and age, can be inferred using asteroseismology. Cool stars with convective envelopes have turbulent motions that can stochastically drive and damp pulsations. The properties of the oscillation frequency power spectrum can be tied to mass and radius through solar-scaled asteroseismic relations. Stellar properties derived using these scaling relations need verification over a range of metallicities. Because the age and mass of halo stars are well-constrained by astrophysical priors, they provide an independent, empirical check on asteroseismic mass estimates in the low-metallicity regime. We identify nine metal-poor red giants (including six stars that are kinematically associated with the halo) from a sample observed by both the Kepler space telescope and the Sloan Digital Sky Survey-III APOGEE spectroscopic survey. We compare masses inferred using asteroseismology to those expected for halo and thick-disk stars. Although our sample is small, standard scaling relations, combined with asteroseismic parameters from the APOKASC Catalog, produce masses that are systematically higher (=0.17+/-0.05 Msun) than astrophysical expectations. The magnitude of the mass discrepancy is reduced by known theoretical corrections to the measured large frequency separation scaling relationship. Using alternative methods for measuring asteroseismic parameters induces systematic shifts at the 0.04 Msun level. We also compare published asteroseismic analyses with scaling relationship masses to examine the impact of using the frequency of maximum power as a constraint. Upcoming APOKASC observations will provide a larger sample of ~100 metal-poor stars, important for detailed asteroseismic characterization of Galactic stellar populations.Comment: 4 figures; 1 table. Accepted to ApJ

    Chemical Composition of Faint (I~21 mag) Microlensed Bulge Dwarf OGLE-2007-BLG-514S

    Get PDF
    We present a high-resolution spectrum of a microlensed G dwarf in the Galactic bulge with spectroscopic temperature T_eff = 5600 +/- 180 K. This I~21 mag star was magnified by a factor ranging from 1160 to 1300 at the time of observation. Its high metallicity ([Fe/H] = 0.33 +/- 0.15) places this star at the upper end of the bulge giant metallicity distribution. Using a K-S test, we find a 1.6% probability that the published microlensed bulge dwarfs share an underlying distribution with bulge giants, properly accounting for a radial bulge metallicity gradient. We obtain abundance measurements for 15 elements and perform a rigorous error analysis that includes covariances between parameters. This star, like bulge giants with the same metallicity, shows no alpha enhancement. It confirms the chemical abundance trends observed in previously analyzed bulge dwarfs. At supersolar metallicities, we observe a discrepancy between bulge giant and bulge dwarf Na abundances.Comment: 13 pages, 8 figures, 5 tables, submitted to Ap

    Validating New Summary Indices for the Childhood Trauma Interview: Associations with First Onsets of Major Depressive Disorder and Anxiety Disorders

    Get PDF
    Childhood and adolescent adversity is of great interest in relation to risk for psychopathology, and interview measures of adversity are thought to be more reliable and valid than their questionnaire counterparts. One interview measure, the Childhood Trauma Interview (CTI; Fink et al., 1995), has been positively evaluated relative to similar measures, but there are some psychometric limitations to an existing scoring approach that limit the full potential of this measure. We propose several new summary indices for the CTI that permit examination of different types of adversity and different developmental periods. Our approach creates several summary indices: one sums the severity scores of adversities endorsed; another utilizes the number of minor and major (moderate to severe) adversities. The new indices were examined in association with first onsets of major depressive disorder (MDD) and anxiety disorders across a 5-year period using annual clinical diagnostic interviews (Structured Clinical Interview for DSM–IV–TR). Summary scores derived with the previously used approach were also examined for comparison. Data on 332 participants came from the Youth Emotion Project, a longitudinal study of risk for emotional disorders. Results support the predictive validity of the proposed summary scoring methods and indicate that several forms of major (but typically not minor) adversity are significantly associated with first onsets of MDD and anxiety disorders. Finally, multivariate regression models show that, in many instances, the new indices contributed significant unique variance predicting disorder onsets over and above the previously used summary indices

    Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars

    Full text link
    A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of 'gyrochronology' uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period-age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can---unlike existing models---reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.Comment: 25 pages, 3 figures in main paper, 6 extended data figures, 1 table. Published in Nature, January 2016. Please see https://youtu.be/O6HzYgP5uyc for a video description of the resul

    Target Selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution infrared spectroscopic survey spanning all Galactic environments (i.e., bulge, disk, and halo), with the principal goal of constraining dynamical and chemical evolution models of the Milky Way. APOGEE takes advantage of the reduced effects of extinction at infrared wavelengths to observe the inner Galaxy and bulge at an unprecedented level of detail. The survey's broad spatial and wavelength coverage enables users of APOGEE data to address numerous Galactic structure and stellar populations issues. In this paper we describe the APOGEE targeting scheme and document its various target classes to provide the necessary background and reference information to analyze samples of APOGEE data with awareness of the imposed selection criteria and resulting sample properties. APOGEE's primary sample consists of ~100,000 red giant stars, selected to minimize observational biases in age and metallicity. We present the methodology and considerations that drive the selection of this sample and evaluate the accuracy, efficiency, and caveats of the selection and sampling algorithms. We also describe additional target classes that contribute to the APOGEE sample, including numerous ancillary science programs, and we outline the targeting data that will be included in the public data releases.Comment: Accepted to AJ. 31 pages, 11 figure

    The APOKASC Catalog: An Asteroseismic and Spectroscopic Joint Survey of Targets in the Kepler Fields

    Full text link
    We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of order 80 K in Teff , 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with Teff and log g. Our effective temperature scale is between 0-200 K cooler than that expected from the Infrared Flux Method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in Teff and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.Comment: 49 pages. ApJSupp, in press. Full machine-readable ascii files available under ancillary data. Categories: Kepler targets, asteroseismology, large spectroscopic survey
    • 

    corecore