35 research outputs found

    Development of a Stable MGAT1− CHO Cell Line to Produce Clade C gp120 With Improved Binding to Broadly Neutralizing Antibodies

    Get PDF
    The high rate of new HIV infections, particularly in Sub-Saharan Africa, emphasizes the need for a safe and effective vaccine to prevent acquired immunodeficiency syndrome (AIDS). To date, the only HIV vaccine trial that has exhibited protective efficacy in humans was the RV144 study completed in Thailand. The finding that protection correlated with antibodies to gp120 suggested that increasing the quality or magnitude of the antibody response that recognize gp120 might improve the modest yet significant protection (31.2%) achieved with this immunization regimen. However, the large-scale production of rgp120 suitable for clinical trials has been challenging due, in part, to low productivity and difficulties in purification. Moreover, the antigens that are currently available were produced largely by the same technology used in the early 1990s and fail to incorporate unique carbohydrates presented on HIV virions required for the binding of several major families of broadly neutralizing antibodies (bNAbs). Here we describe the development of a high-yielding CHO cell line expressing rgp120 from a clade C isolate (TZ97008), representative of the predominant circulating HIV subtype in Southern Africa and Southeast Asia. This cell line, produced using robotic selection, expresses high levels (1.2 g/L) of the TZ97008 rgp120 antigen that incorporates oligomannose glycans required for binding to multiple glycan dependent bNAbs. The resulting rgp120 displays a lower degree of net charge and glycoform heterogeneity as compared to rgp120s produced in normal CHO cells. This homogeneity in net charge facilitates purification by filtration and ion exchange chromatography methods, eliminating the need for expensive custom-made lectin, or immunoaffinity columns. The results described herein document the availability of a novel cell line for the large-scale production of clade C gp120 for clinical trials. Finally, the strategy used to produce a TZ97008 gp120 in the MGAT− CHO cell line can be applied to the production of other candidate HIV vaccines

    Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments

    Get PDF
    Agricultural land management, such as fertilization, liming, and tillage affects soil properties, including pH, organic matter content, nitrification rates, and the microbial community. Three different study sites were used to identify microorganisms that correlate with agricultural land use and to determine which factors regulate the relative abundance of the microbial signatures of the agricultural land-use. The three sites included in this study are the Broadbalk Experiment at Rothamsted Research, UK, the Everglades Agricultural Area, Florida, USA, and the Kellogg Biological Station, Michigan, USA. The effects of agricultural management on the abundance and diversity of bacteria and archaea were determined using high throughput, barcoded 16S rRNA sequencing. In addition, the relative abundance of these organisms was correlated with soil features. Two groups of microorganisms involved in nitrogen cycle were highly correlated with land use at all three sites. The ammonia oxidizing-archaea, dominated by Ca. Nitrososphaera, were positively correlated with agriculture while a ubiquitous group of soil bacteria closely related to the diazotrophic symbiont, Bradyrhizobium, was negatively correlated with agricultural management. Analysis of successional plots showed that the abundance of ammonia oxidizing-archaea declined and the abundance of bradyrhizobia increased with time away from agriculture. This observation suggests that the effect of agriculture on the relative abundance of these genera is reversible. Soil pH and NH(3) concentrations were positively correlated with archaeal abundance but negatively correlated with the abundance of Bradyrhizobium. The high correlations of Ca. Nitrososphaera and Bradyrhizobium abundances with agricultural management at three long-term experiments with different edaphoclimatic conditions allowed us to suggest these two genera as signature microorganisms for agricultural land use

    Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes

    Get PDF
    One mechanism by which disease-associated DNA variation can alter disease risk is altering gene expression. However, linkage disequilibrium (LD) between variants, mostly single-nucleotide polymorphisms (SNPs), means it is not sufficient to show that a particular variant associates with both disease and expression, as there could be two distinct causal variants in LD. Here, we describe a formal statistical test of colocalization and apply it to type 1 diabetes (T1D)-associated regions identified mostly through genome-wide association studies and expression quantitative trait loci (eQTLs) discovered in a recently determined large monocyte expression data set from the Gutenberg Health Study (1370 individuals), with confirmation sought in an additional data set from the Cardiogenics Transcriptome Study (558 individuals). We excluded 39 out of 60 overlapping eQTLs in 49 T1D regions from possible colocalization and identified 21 coincident eQTLs, representing 21 genes in 14 distinct T1D regions. Our results reflect the importance of monocyte (and their derivatives, macrophage and dendritic cell) gene expression in human T1D and support the candidacy of several genes as causal factors in autoimmune pancreatic beta-cell destruction, including AFF3, CD226, CLECL1, DEXI, FKRP, PRKD2, RNLS, SMARCE1 and SUOX, in addition to the recently described GPR183 (EBI2) gene

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Dipeptidyl peptidase-1 inhibition in patients hospitalised with COVID-19: a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial

    Get PDF
    Background Neutrophil serine proteases are involved in the pathogenesis of COVID-19 and increased serine protease activity has been reported in severe and fatal infection. We investigated whether brensocatib, an inhibitor of dipeptidyl peptidase-1 (DPP-1; an enzyme responsible for the activation of neutrophil serine proteases), would improve outcomes in patients hospitalised with COVID-19. Methods In a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial, across 14 hospitals in the UK, patients aged 16 years and older who were hospitalised with COVID-19 and had at least one risk factor for severe disease were randomly assigned 1:1, within 96 h of hospital admission, to once-daily brensocatib 25 mg or placebo orally for 28 days. Patients were randomly assigned via a central web-based randomisation system (TruST). Randomisation was stratified by site and age (65 years or ≥65 years), and within each stratum, blocks were of random sizes of two, four, or six patients. Participants in both groups continued to receive other therapies required to manage their condition. Participants, study staff, and investigators were masked to the study assignment. The primary outcome was the 7-point WHO ordinal scale for clinical status at day 29 after random assignment. The intention-to-treat population included all patients who were randomly assigned and met the enrolment criteria. The safety population included all participants who received at least one dose of study medication. This study was registered with the ISRCTN registry, ISRCTN30564012. Findings Between June 5, 2020, and Jan 25, 2021, 406 patients were randomly assigned to brensocatib or placebo; 192 (47·3%) to the brensocatib group and 214 (52·7%) to the placebo group. Two participants were excluded after being randomly assigned in the brensocatib group (214 patients included in the placebo group and 190 included in the brensocatib group in the intention-to-treat population). Primary outcome data was unavailable for six patients (three in the brensocatib group and three in the placebo group). Patients in the brensocatib group had worse clinical status at day 29 after being randomly assigned than those in the placebo group (adjusted odds ratio 0·72 [95% CI 0·57–0·92]). Prespecified subgroup analyses of the primary outcome supported the primary results. 185 participants reported at least one adverse event; 99 (46%) in the placebo group and 86 (45%) in the brensocatib group. The most common adverse events were gastrointestinal disorders and infections. One death in the placebo group was judged as possibly related to study drug. Interpretation Brensocatib treatment did not improve clinical status at day 29 in patients hospitalised with COVID-19
    corecore