1,127 research outputs found

    Night-time lighting alters the composition of marine epifaunal communities

    Get PDF
    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities.European Research Council under the European Union's Seventh Framework programme (FP7/2007-2013

    Alignment of multiple glial cell populations in 3D nanofiber scaffolds: toward the development of multicellular implantable scaffolds for repair of neural injury

    Get PDF
    Non-neuronal cells of the central nervous system (CNS), termed "neuroglia," play critical roles in neural regeneration; therefore, replacement of glial populations via implantable nanofabricated devices (providing a growth-permissive niche) is a promising strategy to enhance repair. Most constructs developed to date have lacked three-dimensionality, multiple glial populations and control over spatial orientations, limiting their ability to mimic in vivo neurocytoarchitecture. We describe a facile technique to incorporate multiple glial cell populations [astrocytes, oligodendrocyte precursor cells (OPCs) and oligodendrocytes] within a three-dimensional (3D) nanofabricated construct. Highly aligned nanofibers could induce elongation of astrocytes, while OPC survival, elongation and maturation required pre-aligned astrocytes. The potential to scale-up the numbers of constituent nanofiber layers is demonstrated with astrocytes. Such complex implantable constructs with multiple glial sub-populations in defined 3D orientations could represent an effective approach to reconstruct glial circuitry in neural injury sites

    Investigation into durable polymers with enhanced toughness and elasticity for application in flexible Li-Ion batteries

    Get PDF
    Next-generation wearable devices compel the development of lithium-ion batteries (LIBs) that can afford mechanical flexibility while remaining safe and stable energy sources. In conventional battery designs the electrode coatings are susceptible to fracture and disintegration when exposed to cyclic flexure. This results in capacity loss, resistance increases, and severely limits their cycle life. Polyurethane (PU) has been investigated as a battery binder but without research into the variety of chemistries available, and how they affect performance. This research investigates three different PU chemistries, each composed of a different polyol backbone–polyester, polyether and polycaprolactone. These are compared with PVDF, the most commonly used rigid binder in industry. The combination of electrochemical and mechanical characterization identified the importance of PU binder chemistry, particularly when the binder’s interaction with the electrolyte was considered. Both the polyester and polycaprolactone PU chemistries swelled significantly when placed in an electrolyte, compromising their conductive networks and mechanical advantages. In contrast, polyether PU was found to be a suitable binder for flexible batteries as it has strong adhesion and retains its properties even after swelling in the electrolyte. These findings present a promising polymer choice to facilitate the development of advanced and durable electrodes for flexible energy storage systems

    External conditions drive optimal planting configurations for salt marsh restoration

    Get PDF
    Coastal salt marshes are threatened by erosion from storminess and sea level rise, with resulting losses in flood protection, wildlife and recreational space. Although more than $1 billion has been spent to reconcile losses, restoration has had varying success because of poor survival of planted patches in challenging wave and current conditions. Marsh expansion after colonization or replanting is regulated by positive and negative feedbacks between vegetation density and sediment capture. Dense vegetation stimulates sediment capture and vertical patch growth, but negatively constrains patch expansion by concentrating hydrological energy into erosion gullies along patch edges. Conversely, low-density vegetation may not simulate enough sediment capture, which increases plant dislodgement mortality. The strengths of positive and negative feedbacks will vary with wave exposure, but this has never been tested in natural conditions. We observed density-dependent sediment feedbacks, survival and lateral expansion by Sporobolus anglicus patches (0.8 × 0.8 m) planted at three levels of vegetation density, at each of three levels of wave forcing (three sites). We found interactive effects of plant density and forcing on the strength of positive and negative feedbacks. Density-dependent feedbacks only emerged in moderate and exposed conditions: classic marsh tussock patch shapes, which arise due to combined positive (vertical growth) and negative (gullies) feedbacks, were only associated with high density vegetation under exposed conditions. At high exposure, survival was enhanced by dense planting, which diverted energy away from the vegetation. In sheltered conditions, expansion was the greatest at medium density, while dense patches had high mortality and erosion. Synthesis and applications. Success of wetland restoration clearly hinges on considering interactions between environmental stress and planting density. In challenging high-exposure settings, dense planting in large patches should maximize success, as plant facilitation boosts sediment capture and negative edge effects (gullies) will represent a diminished proportion of larger patches. Yet, benefits of dense planting will switch from positive (facilitation) to negative (competition) with reduced environmental stress, when moderate-density planting might be optimal. Switches along stress gradients between positive and negative feedbacks are common across ecosystems. We call for wider integration of facilitation and stress–gradient principles into restoration design to safeguard restoration successes

    Race and sex: teachers' views on who gets ahead in schools?

    Get PDF
    The research reported here was part of a large study of the impact of age, disability, race and sex on the teaching profession in England. The basic question asked in this research was how do these factors interact with career aspirations and achievements of classteachers, promoted teachers and headteachers? There were three different data sources: a large postal survey drawn from diverse geographic regions across England with over 2000 respondents; face‐to‐face individual interviews with over 100 teachers in 18 case study schools from across all of the main regions of England; discussions with special interest groups of teachers. Not surprisingly, the answer to the above question was complex. Nonetheless, the paper's conclusion highlights some of the noteworthy themes across this broad sample of teachers from primary, secondary and special schools

    Quantifying non-CO2 contributions to remaining carbon budgets

    Get PDF
    The IPCC Special Report on 1.5 °C concluded that anthropogenic global warming is determined by cumulative anthropogenic CO2 emissions and the non-CO2 radiative forcing level in the decades prior to peak warming. We quantify this using CO2-forcing-equivalent (CO2-fe) emissions. We produce an observationally constrained estimate of the Transient Climate Response to cumulative carbon Emissions (TCRE), giving a 90% confidence interval of 0.26–0.78 °C/TtCO2, implying a remaining total CO2-fe budget from 2020 to 1.5 °C of 350–1040 GtCO2-fe, where non-CO2 forcing changes take up 50 to 300 GtCO2-fe. Using a central non-CO2 forcing estimate, the remaining CO2 budgets are 640, 545, 455 GtCO2 for a 33, 50 or 66% chance of limiting warming to 1.5 °C. We discuss the impact of GMST revisions and the contribution of non-CO2 mitigation to remaining budgets, determining that reporting budgets in CO2-fe for alternative definitions of GMST, displaying CO2 and non-CO2 contributions using a two-dimensional presentation, offers the most transparent approach

    Artificial shorelines lack natural structural complexity across scales

    Get PDF
    From microbes to humans, habitat structural complexity plays a direct role in the provision of physical living space and increased complexity supports higher biodiversity and ecosystem functioning across biomes. Natural coastlines are structurally complex transition zones between land and sea that support diverse ecological communities but are under increasing pressure from human activity. Coastal development and the construction of artificial shorelines are changing our landscape and altering biodiversity patterns as humans seek both socio-economic benefits and protection from coastal storms, flooding, and erosion. In this study, we evaluate how much structural complexity is missing, and at which scales, with the creation of artificial structures compared to naturally occurring rocky shores. We quantified the structural complexity of both artificial and natural shores at resolutions from 1 mm through to 10s of m using three remote sensing platforms (handheld camera, terrestrial laser scanner and uncrewed aerial vehicles) across both artificial and natural shorelines. Natural shorelines were approximately 20-50 % more structurally complex and offered greater structural variation between locations. In contrast, artificial shorelines were more structurally homogenous and typically deficient in structural complexity across scales. Our findings reinforce concerns that replacing natural rocky shorelines with artificial structures simplifies coastlines at organism-relevant scales. Furthermore, we offer much-needed insight into how structures might be modified to more closely capture the complexity of natural shorelines that support biodiversity

    An interactive database for the investigation of high-density peptide microarray guided interaction patterns and antivenom cross-reactivity

    Get PDF
    Snakebite envenoming is a major neglected tropical disease that affects millions of people every year. The only effective treatment against snakebite envenoming consists of unspecified cocktails of polyclonal antibodies purified from the plasma of immunized production animals. Currently, little data exists on the molecular interactions between venom-toxin epitopes and antivenom-antibody paratopes. To address this issue, high-density peptide microarray (hdpm) technology has recently been adapted to the field of toxinology. However, analysis of such valuable datasets requires expert understanding and, thus, complicates its broad application within the field. In the present study, we developed a user-friendly, and high-throughput web application named “Snake Toxin and Antivenom Binding Profiles” (STAB Profiles), to allow straight-forward analysis of hdpm datasets. To test our tool and evaluate its performance with a large dataset, we conducted hdpm assays using all African snake toxin protein sequences available in the UniProt database at the time of study design, together with eight commercial antivenoms in clinical use in Africa, thus representing the largest venom-antivenom dataset to date. Furthermore, we introduced a novel method for evaluating raw signals from a peptide microarray experiment and a data normalization protocol enabling intra-microarray and even inter-microarray chip comparisons. Finally, these data, alongside all the data from previous similar studies by Engmark et al., were preprocessed according to our newly developed protocol and made publicly available for download through the STAB Profiles web application (http://tropicalpharmacology.com/tools/stab-profiles/). With these data and our tool, we were able to gain key insights into toxin-antivenom interactions and were able to differentiate the ability of different antivenoms to interact with certain toxins of interest. The data, as well as the web application, we present in this article should be of significant value to the venom-antivenom research community. Knowledge gained from our current and future analyses of this dataset carry the potential to guide the improvement and optimization of current antivenoms for maximum patient benefit, as well as aid the development of next-generation antivenoms.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP
    • 

    corecore