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Abstract Introductions of invasive, non-native spe-

cies in the marine environment are increasing as

human activity within coastal areas rises. Genetic

datasets are useful tools to identify source populations,

track routes of invasions, and illuminate the role of

genetic variation in the establishment and subsequent

spread of novel introductions. Here, a microsatellite

dataset is used to estimate the genetic diversity and

population structure of 7 introduced Didemnum vex-

illum populations in Britain and Ireland, 4 of which are

associated with aquaculture and 3 with marinas.

Genetic differentiation observed between these pop-

ulations indicates human-mediated transport as the

main mechanism underlying the population structure

of D. vexillum in Britain and Ireland. In addition to

elucidating patterns of population structure we found

that aquaculture sites showed significantly higher

genetic diversity (measured as allelic richness) in

comparison to the marina sites. We discuss these

findings in relation to the history of each invasion, the

complex life history of D. vexillum, and available

evidence of the relative invasiveness of these popu-

lations. Our results show numerous interesting pat-

terns which highlight further research avenues to

elucidate the complex factors underlying the global

spread of this successful invader.

Keywords Didemnum vexillum � Invasive species �
Genetic diversity � Invasiveness

Introduction

Examining patterns of genetic diversity in invasive

non-native species (INNS) can provide important

mechanistic insights into the pathways of invasion and

assist future management (Wellband et al. 2017).

Historically, newly introduced populations of INNS

were expected to exhibit low levels of genetic

variation due to genetic drift, a result of population

bottlenecks and founder events following transport

from their native range (Dlugosch and Parker 2008;

Crawford and Whitney 2010). Despite these expecta-

tions, many successful introductions of INNS have

retained high genetic diversity (Lavergne and Molof-

sky 2007; Crawford and Whitney 2010; Wellband

et al. 2017), likely the result of high propagule

pressure (Simberloff 2009), multiple introduction
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events (e.g., Kolbe et al. 2004; Dlugosch and Parker

2008), and/or stratified dispersal (Darling and Folino-

Rorem 2009; Tobin and Blackburn 2008; Berthouly-

Salazar et al. 2013). Rius et al. (2015), report clear

evidence of reduced genetic diversity in only 23%

studies of introduced marine populations, with most

studies (74%) reporting no change in diversity

between introduced and native populations. In addi-

tion to variability in genetic characteristics, inter-

specific comparisons of INNS suggests that there is a

high degree of variability in the rate of range

expansions following new invasions, with some

populations expanding rapidly (O’Neill and Dextrase

1994), and others experiencing significant lag phases

before expansion (Aikio et al. 2010). Further, not all

populations of an INNS have equal potential for

becoming invasive (Allendorf and Lundquist 2003),

and instances of marine INNS with both invasive and

non-invasive populations have been reported (e.g.,

Osman and Whitlatch 2007).

The carpet sea squirt (Didemnum vexillum) is a

colonial ascidian native to Japanese waters (Stefaniak

et al. 2012) that has invaded temperate regions

globally, likely via the movement of ships with fouled

hulls, and/or as epifaunal growth on cultured Pacific

oysters.D. vexillum is an invasive species of particular

concern due to its ability to significantly alter the

structure, biodiversity and function of ecosystems and

communities (Mckenzie et al. 2017). Despite reduc-

tions of genetic diversity in comparison to native

populations in both mitochondrial (Smith et al.

2012, 2015; Ordóñez et al. 2015) and nuclear (Casso

et al. 2019a) markers, introduced populations from a

single clade of D. vexillum have successfully colo-

nised a variety of environments (Stefaniak et al. 2012;

Smith et al. 2015). Across introduced populations,

colonies vary in size (Coutts 2002; Valentine et al.

2007), morphology (Coutts and Forrest 2007; Lambert

2009), and in their extent of spread from artificial

structures where they were originally introduced to

natural habitats. Dispersal within regions where D.

vexillum has been introduced is likely a combination

of both natural and human-mediated dispersal. Short-

distance dispersal likely occurs frequently via larvae

(D. vexillum has a short-lived larval duration lasting

from 2–36 h; Fletcher et al. 2013), while sporadic

long-distance movements can occur both naturally

through fragmentation and reattachment of colonies

(Morris and Carman 2012) and/or rafting of colonies

attached to floating materials (Worcester 1994) and

via human-mediated mechanisms.

Increasing economic activity and vessel movement

within and around the Irish Sea make the continued

spread of D. vexillum a significant threat to both

British and Irish ecosystems and economies. Given the

complex interaction between natural and human-

mediated dispersal, and its range of observed pheno-

types, there is still much to learn about D. vexillum

introductions, and genetic tools remain invaluable

resources to address these questions. Here we estimate

genetic differentiation of D. vexillum populations

around the coasts of Britain and Ireland. We hypoth-

esize that human-mediated dispersal is most likely to

drive the genetic structure between populations and

predict that sites connected by human activity (e.g.,

marina sites connected by vessel movement or aqua-

culture sites linked by transfer of contaminated seed

stock) will be more closely related, regardless of

geographic distance. We also estimate genetic diver-

sity for each population, and discuss these results in

light of qualitative evidence of invasiveness, and the

complex life-history of D. vexillum. If the variable

invasiveness of D. vexillum introductions can be

linked to specific genetic characteristics (i.e. discrete

genetic clusters or patterns in diversity), the manage-

ment of both existing and novel introductions can be

prioritized to those with greater risks of impact.

Methods

Study area

The coastlines of Britain and Ireland have experienced

multiple introductions of Didemnum vexillum since it

was first recorded in Ireland in 2005 (Malahide

Marina; Minchin and Sides 2006) and in Britain in

2008 (Holyhead marina, Wales; Griffith et al. 2009).

The current distribution of D. vexillum includes

numerous introductions concentrated in areas sup-

porting human activity (oyster aquaculture farms and

marinas). Here, we sampled from 7 geographically

isolated introduced populations within England, Ire-

land andWales (Fig. 1, Table 1).We also qualitatively

described each population (colonization history, mor-

phology and habitats colonized) by combining evi-

dence from peer-reviewed and grey literature sources

alongside anecdotal evidence from industry and
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government professionals and our own personal

observations (Online Resource 1).

Sample collection and DNA extraction

We sampled a total of 419 D. vexillum colonies from

seven locations in the summer months between July

2017 and September 2019. Clew Bay, Galway Bay,

Dunmanus Bay and Kent are sheltered sites in which

oyster aquaculture takes place on intertidal trestles.

The sites at Malahide and Holyhead are marinas

containing boats and other floating structures (buoys,

pontoons, etc.). Strangford Lough supports both oyster

aquaculture and marina infrastructure both of which

have been colonised by D. vexillum. It is unknown

whether the D. vexillum population in the marina that

was sampled for this study spread from aquaculture

sites or originated from a separate introduction

directly to the marina. See Online Resource 2 for

detailed information on sampling methods.

Total genomic DNA was extracted from tissue

sections using a Qiagen DNeasy Blood & Tissue Kit,

according to the manufacturer’s protocol. As D.

vexillum colonies have been reported to fuse and form

chimeric colonies at the fusion interface (Fidler et al.

2018; Casso et al. 2019b), DNA was extracted from a

small section of tissue (\ 100 mg) to minimize the

probability of capturing a fusion interface.

Genetic profiling of samples

Before microsatellite profiling, we sequenced an

* 600 bp region of the COI gene in a subset of 71

randomly chosen samples across all populations

(between 3 and 22 samples/population) to confirm

species ID using the tunicate-specific primers of

Stefaniak et al. (2009). As this is the first known

report ofD. vexillum in Dunmanus Bay, we sequenced

all samples collected from this site at the COI gene, in

addition to an * 480 bp fragment of the 18S rRNA

gene using the primers designed by Price et al. (2005).

Twentymicrosatellite loci from published literature

were initially assessed for use in this study (Abbott

et al. 2011; Fidler et al. 2018; Watts et al. 2019), from

which we selected 7 polymorphic loci (Dvex03,

Dvex10, Dvex11, Dvex18, Dvex19, Dvex20 and

Dvex42) that could be amplified reliably and scored

consistently across all samples. See Online Resource 2

for detailed information on genetic profiling methods.

Fig. 1 Sampling site locations forDidemnum vexillum introduced populations within the UK and Ireland. Aquaculture and marina sites

are represented as white and black circles, respectively. The size of circle is proportional to sample size
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Genetic diversity and population structure

The R (R Core Team 2018) package adegenet version

2.0.1 (Jombart 2008) was used to estimate observed

(HO) and expected (HE) heterozygosity for each locus,

and to conduct t-tests to evaluate whether average HO

and HE were significantly different across loci for each

population. This package was also used to conduct

Bonferroni-corrected (a = 0.05) chi-squared tests to

detect loci that departed from Hardy–Weinberg

Equilibrium (HWE). GENEPOP (version 4.7; Ray-

mond and Rousset 1995; Rousset 2008) was used to

implement Fisher’s exact tests for linkage disequilib-

rium (LD) for all locus pairs within each population.

HP-RARE version 1.1 (Kalinowski 2005) was used to

estimate average allelic richness (AR) and private

allelic richness for each population, which were

corrected for our lowest sample size (N = 15) using

rarefaction. Lastly, the R package diversity version

1.9.90 (Keenan et al. 2013) was used to generate

multiple estimates of both global and pairwise genetic

differentiation (FST [Weir and Cockerham 1984]; GST

[Nei 1973]; and Jost’s D [Jost 2008]) in addition to the

Table 1 Sites sampled and number (N) of unique Didemnum vexillum colonies sampled from 7 introduced populations along coasts

of the United Kingdom and Ireland

Site X Y Site type Substrates sampled N (artificial/natural) NCLONES NCHIMERA NANALYZED

Clew Bay,

Ireland

-9.617 53.791 Aquaculture Oyster trestles 41 (41/0) 0 (0%) 1 (2.4%) 40

Galway

Bay,

Ireland

-8.956 53.178 Aquaculture Oyster trestles, natural

boulders and kelp in

proximate lower

intertidal shore

121 (63/58) 13

(10.7%)

3 (2.4%) 105

Dunmanus

Bay,

Ireland

-9.552 51.603 Aquaculture Oyster trestles, natural

boulders and kelp in

proximate lower

intertidal shore

22 (11/11) 1 (4.5%) 0 (0%) 21

Strangford

Lough,

Northern

Ireland

-5.649 54.491 Pontoons Lightship hull &

surrounding

pontoons

17 (17/0) 0 (0%) 2 (11.8%) 15

Malahide

Marina,

Ireland

-6.151 53.454 Marina Pontoons 62 (81/0) 0 (0%) 3 (3.7%) 59

Holyhead

Marina,

Wales

-4.641 53.320 Marina Boat hulls, pontoons,

chains, ropes &

buoys

81 (81/0) 15

(18.5%)

0 (0%) 66

Kent,

England

1.117 51.373 Coastal

defences

and other

artificial

substrates

Wooden groynes, rock

groynes, water pipe,

concrete pier pilings,

tyres, buoys &

natural rock and kelp

in lower intertidal

shore

75 (57/18) 0 (0%) 3 (4%) 72

Total 419 29

(6.9%)

12 (2.7%) 378

(86.3%)

As D. vexillum can reproduce asexually sample sizes reflect the total number of samples collected (N; in brackets is the number of

samples collected from artificial substrates/and natural substrates), the number of samples that were identified as clones based on

identical genotype profiles (NCLONES; in brackets is the proportion of samples that were clones), the number of samples that were

identified as putative chimeric colonies based on the presence of[ 2 alleles at least 1 locus (NCHIMERA; in brackets is the proportion

of samples that were putative chimeras) and the number of genetically unique, non-chimeric samples used in data analysis

(NANALYZED)
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inbreeding coefficient, FIS, with 95% confidence

intervals on each estimate (999 bootstraps).

To determine whether there were significant dif-

ferences in genetic diversity between populations

from different habitats, we conducted comparisons of

genetic diversity metrics (HO, AR, gene diversity [HS]

and FIS) among populations grouped by habitat type

(aquaculture vs. marina) using the software FSTAT

v2.9.4 (Goudet 2003). For this analysis we employed

two-tailed tests using 10,000 permutations to test for

significance. To examine the distribution of genetic

variation within and among samples in relation to both

population and habitat type, we conducted an analysis

of molecular variance (AMOVA) in Arlequin v3.5.2.2

(Excoffier and Lischer 2010) and evaluated the

significance of differentiation between and within

groups using 10,000 permutations. As the Kent

population may have been originally introduced via

aquaculture but since spread to other natural and

artificial environments, we conducted 2 tests for both

of the analyses described above: (1) including Kent in

the aquaculture group, and (2) excluding Kent from

the analysis.

In addition to estimates of genetic differentiation

(FST, GST, Jost’s D), the Bayesian clustering software

STRUCTURE version 2.3.4 (Pritchard et al. 2000)

was used to test scenarios of K = 1–7, running 10

iterations for each value of K and using a burn-in

period of 500,000 followed by 1 9 106 Markov chain

Monte Carlo iterations. An admixture model was

specified, as secondary introductions or movement of

vessels/aquaculture equipment between sites may

have facilitated admixture between populations. As

STRUCTURE has been shown to incorrectly estimate

K when sampling is unbalanced (Wang 2017), the

independent allele frequency model was selected, the

alternative ancestry prior was applied (allowing for

unequal representation of source populations in each

sampled population), and the default value of ALPHA

was changed to 1/K (0.14). The Evanno method

(Evanno et al. 2005) was implemented in STRUC-

TURE HARVESTER (Earl and vonHoldt 2012) to

select the most likely number of genetic clusters, and

the 10 replicate runs for the best supported K were

summarized with the software CLUMPP (Jakobsson

and Rosenberg 2007). The results were visualised with

DISTRUCT (Rosenberg 2004). Due to the reliance of

STRUCTURE on the underlying assumptions of

population genetics models, population structure was

also assessed with a multivariate analysis, Discrimi-

nant Analysis of Principal Components (DAPC),

implemented in the R package adegenet version

2.0.1 (Jombart 2008). As DAPC does not rely on the

assumption of mutation-drift-equilibrium, it has been

suggested to be appropriate for invasive species

(Wellband et al. 2017). It has also been shown to be

a reliable method for detecting genetic clines or

clusters that were not detected with STRUCTURE in

weakly differentiated populations (Jombart et al.

2010; Kanno et al. 2011).

Results

Genetic diversity and population structure

Of our sample subset sequenced at the COI gene

(N = 71), all were identified as D. vexillum with

99–100% identity matches to at least 1 D. vexillum

sequence in the NCBI GenBank database. At the 18S

rRNA gene, all Dunmanus Bay samples were identi-

fied as D. vexillum with 99–100% identity matches to

at least 1 D. vexillum sequence in the GenBank

database. We trimmed sequences to remove base calls

of low quality and submitted all sequences to

GenBank (Accession Numbers COI: MW425612-

MW425681; 18S: MW415990-MW416011).

We observed a total of 6.9% clones in our dataset

(range 0–18.5%; Table 1), all of which were collected

from the same local area within each site. We also

observed very few putative chimeras in our samples

(2.7% of all samples) across sites (Table 1). The

number of alleles per locus ranged between 3 and 14

within our dataset. See Online Resource 3 for a

summary of HO/HE, HWE, LD, and FIS results. Allelic

richness (AR) was lower in marina sites (average

AR = 3.15) compared to aquaculture sites (average

AR = 4.64; Table 2). Sites with the highest AR were

also those that showed the highest numbers of private

alleles (Table 2). Comparisons of genetic diversity

metrics (HO, AR, gene diversity and FIS) for popula-

tions grouped by habitat revealed a significant differ-

ence in AR between aquaculture and marina habitats,

regardless of whether Kent was included (p = 0.025)

or excluded (p = 0.025) from the analysis. All other

tests were insignificant (p[ 0.05).

Estimates of genetic differentiation showed largely

similar patterns for each of the metrics measured (FST,
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GST, and Jost’s D) and only FST and Jost’s D are

reported here (Online Resource 4). For both FST and

Jost’s D, genetic differentiation was significant for

global estimates (global FST = 0.084 [95% CI’s

0.073–0.093]; global Jost’s D = 0.109 [95% CI’s

0.091–0.133]), and all pairwise population compar-

isons with the exception of Clew Bay and Dunmanus

Bay. The most highly differentiated sites were marina

sites, with Strangford Lough being the most differen-

tiated across all sites. While Holyhead Marina was

closely related to Malahide Marina, it was also highly

differentiated from all other sites. Of the aquaculture

sites, Galway Bay was most highly differentiated, with

the lowest differentiation between Clew Bay and

Dunmanus Bay. Our AMOVA analysis revealed

significant partitions in genetic variation among

habitat groups, among populations within habitat

groups, among individuals within populations and

within individuals, the latter explaining the largest

percentage of variation in our dataset (Online

Resource 5). These significant differences were

retained regardless of whether we included Kent in

the analysis, however we note that the difference

among habitat groups becomes less significant when

Kent is included (p\ 0.001 with Kent removed vs.

p\ 0.01 with Kent included).

Both Evanno’s Delta K and Ln(K) plots provided

strong support for 3 genetic clusters using our set of 7

presumably neutral microsatellite markers (Online

Resource 6). These clusters corresponded to groupings

of (1) marina (Holyhead and Malahide Marinas) and

(2) aquaculture (Galway Bay) sites, with (3) Kent and

Strangford Lough forming a third, genetically distinct

cluster (Fig. 2). The aquaculture sites Clew Bay and

Dunmanus Bay showed admixture between genetic

clusters 2 and 3. The results of the DAPC analysis

mirrored the STRUCTURE results closely (Fig. 3).

Discussion

Estimates of genetic relatedness among D. vexillum

populations show a complex picture, with a combina-

tion of effects related to regional proximity and habitat

type. Firstly, AMOVA results suggest significant

partitions in genetic variation among habitat types

(i.e., marinas vs. aquaculture), even though these

groupings account for the smallest proportion of

variation overall. Additionally, while we show genetic

connectivity between some spatially clustered sites,

there are notable exceptions of long-distance connec-

tivity, providing evidence for potential source popu-

lations and routes of invasion within Britain and

Ireland. For example, high genetic connectivity was

detected between Malahide and Holyhead marinas,

situated on opposite sides of the Irish Sea with

substantial boat traffic between them. In contrast, the

third marina site in Strangford Lough, on the east coast

Table 2 Estimates of observed (HO) and expected (HE)

heterozygosity, allelic richness (mean number of alleles per

locus), private allelic richness (mean number of private alleles

per locus) and inbreeding coefficients (FIS) estimated across 7

microsatellite loci in 378 Didemnum vexillum samples col-

lected from 7 introduced populations across the UK and Ireland

Site Invasiveness Average HO/

HE

Allelic

richness

Private allelic

richness

FIS

estimate Lower 95%

CI

Upper 95%

CI

Kent High 0.64/0.63 4.37 0.04 -0.012 -0.067 0.046

Clew Bay High 0.66/0.64 5.29 0.36 -0.038 -0.102 0.029

Galway Bay High 0.57/0.57 4.18 0.05 0.002 -0.042 0.047

Dunmanus Bay Unknown 0.53/0.60 4.73 0.36 0.108 -0.006 0.22

Strangford

Lough

Medium 0.57/0.48 2.57 0.03 -0.162 -0.352 0.024

Malahide

Marina

Medium 0.65/0.60 3.89 0.10 -0.080 -0.137 -0.019

Holyhead

Marina

Low 0.44/0.49 2.99 0.05 0.096 0.016 0.169

Allelic richness and private allelic richness are corrected for a sample size of 15 using rarefaction
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of Northern Ireland, is genetically divergent from the

other two marinas but shows high connectivity to

Kent, a site associated with aquaculture on the

southeastern coast of England. While the pathways

leading to D. vexillum introduction at these sites are

not well understood, movement of oysters between

Kent and Strangford Lough for aquaculture offers a

possible explanation. Given the limited natural larval

dispersal capabilities of D. vexillum (Fletcher et al.

2013), the patterns of genetic differentiation and

population structure reported here (Figs. 2, 3, Online

Resource 4) are likely to reflect human-mediated

dispersal rather than natural dispersal as the primary

mode of connectivity between populations throughout

Britain and Ireland. This finding agrees with a growing

body of literature attributing aquaculture practices and

maritime trade to the introduction and spread of INNS

globally (e.g., Voisin et al. 2005; de Barros et al. 2009;

Blakeslee et al. 2010; Meistertzheim et al. 2013; Cruz

Capel et al. 2017).

At the local level, natural and human-mediated

dispersal are more difficult to disentangle. The pres-

ence of individuals from STRUCTURE cluster 2 in all

three aquaculture-associated populations on the west

coast of Ireland (Galway Bay, Clew Bay and Dun-

manus Bay) suggests a common source. However, it is

not clear whether this has arisen due to natural

dispersal from a single introduction or separate

human-mediated introductions (i.e., the use of oyster

seed from a common contaminated source at all three

sites). The capabilities of D. vexillum colonies to

fragment and re-attach to new substrates supports the

potential for natural dispersal and connectivity

between proximate populations (Bullard et al. 2007;

Fig. 2 STRUCTURE plot based on 10 replicates representing

the proportion of an individual’s genome assigned to one of

three genetic clusters identified across 7 introduced populations

of the invasive marine tunicate Didemnum vexillum within the

UK and Ireland. Here we show results for K = 2 (top), K = 3

(middle), and K = 4 (bottom), with strong support for K = 3 as

the number of genetic clusters explained by the data

Fig. 3 Axes 1 and 2 of a Discriminant Analysis of Principal

Components (DAPC) plot showing genetic clustering of 378

colonies of the invasive tunicate Didemnum vexillum sampled

across 7 introduced populations within the UK and Ireland.

Population labels are positioned at approximately the centroid of

each cluster, with slight adjustments made to prevent label

overlap
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Reinhardt et al. 2012) and as fragments can be viable

in the water column for up to 3 weeks (Morris and

Carman 2012), dispersal of D. vexillum via drifting or

rafting may promote connectivity at a regional scale

(i.e., among aquaculture sites). In contrast, individuals

assigned to STRUCTURE cluster 3 are common at

Clew Bay and Dunmanus Bay but very rare at Galway

Bay, despite the fact that Galway Bay lies between the

other two populations. This suggests separate intro-

ductions facilitated by human-mediated transporta-

tion, or divergence between sites following a single

introduction due to a lack of gene flow, and refutes the

likelihood of natural dispersal between sites. The

inclusion of additional invasive (European) and native

(Japanese) populations outside our study area would

help to resolve the complex relationships between

these populations (e.g. as in Casso et al. 2019a), and

importantly allow for the identification of source

populations.

In addition to enhancing our understanding of the

patterns of connectivity among populations, our work

also provides insight into the potential role of envi-

ronment and/or genetic diversity in determining

invasiveness. Qualitative measures of invasiveness

were higher in populations of D. vexillum at aquacul-

ture sites, and these populations also had greater allelic

richness. Local environment can have an important

role in determining the likelihood of INNS becoming

invasive (e.g., Alpert et al. 2000; Burns 2006). For

example, in the relatively open coastal habitats used

for oyster aquaculture, D. vexillum may experience

greater competitive advantage (Osman and Whitlatch

2007) and there is greater opportunity for natural

dispersal of larvae and therefore local spread. How-

ever, marina environments, despite being more con-

fined, may provide superior conditions for growth

(e.g., protection from air exposure/desiccation, sun-

light, sedimentation, and strong wave action; Daniel

and Therriault 2007 and references therein), and

opportunities for human-mediated dispersal.

An alternative explanation for the observed varia-

tion in invasiveness is the potential for a relationship

between genetic diversity and invasive success. Lower

genetic diversity can lead to the reduced success of

invasive populations via both neutral and adaptive

processes that vary temporally. From a neutral

perspective, low genetic diversity may be indicative

of introductions with low propagule pressure, which

can negatively affect invasion success via both genetic

and demographic processes (Hufbauer et al. 2013;

Blackburn et al. 2015; Bock et al. 2015). For example,

populations with lower genetic diversity are more

likely to suffer the negative effects of inbreeding

depression, which is likely to affect populations at

early stages of introduction when population sizes are

small (Charlesworth and Charlesworth 1987). Addi-

tionally, populations with high genetic diversity have a

higher probability of containing genotypes that facil-

itate establishment success (e.g. Gamfeldt et al. 2005),

or resilience to disturbance or novel environments

(e.g. Reusch et al. 2005; Crawford andWhitney 2010).

Over longer time-scales, admixture may play a large

role in determining invasive success (e.g., Keller and

Taylor 2010; Hudson et al. 2020), by increasing

genetic variation for evolution, creating novel pheno-

types via new allele and gene combinations, facilitat-

ing heterosis, and masking or purging deleterious

mutations which may counteract the initial negative

effects of bottlenecks and/or inbreeding (Verhoeven

et al. 2011; Bock et al. 2015). Thus, if aquaculture

populations have experienced more inter-population

admixture than marina populations, this could explain

their elevated levels of genetic diversity and increased

invasive success in comparison to our more geograph-

ically isolated marina populations. From a selection

standpoint, if neutral and functional nuclear diversity

are positively correlated, then high standing genetic

diversity may benefit selection and facilitate survival

and spread in novel and stressful environments

(Prentis et al. 2008). Indeed, greater genetic variation

in ecologically important traits has been related to

greater niche breadth in geographically widespread

species (Sheth and Angert 2014). While potentially

comprising an important mechanism of invasiveness,

the influence of selection in D. vexillum cannot be

properly investigated with our dataset of neutral

markers, and we encourage further research using

quantitative traits and functional genomic loci.

As a group, the three marina populations analysed

here exhibited significantly lower allelic richness than

the four populations associated with oyster aquacul-

ture. While higher genetic diversity in aquaculture

populations may be attributed to the greater scale of

sampling and more diverse substrates sampled at

aquaculture sites in comparison to marinas, we note

that our sampling was representative of true differ-

ences between the habitat types; marina populations in

general did not show extensive spread throughout the
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local area and did not colonise available natural

substrates. Given that the introduction of D. vexillum

within the UK and Ireland is spatially distributed such

that populations associated with similar habitats (i.e.

aquaculture vs. marina) are spatially clustered, the

extent to which we are able to disentangle the relative

contribution of habitat type from other regional biotic

and abiotic factors is limited.

While genetic datasets can be useful to describe

underlying patterns of connectivity and diversity in

INNS populations, the complex ecology of many

INNS make interpretations from genetic data difficult.

D. vexillum undergoes both sexual and asexual

reproduction (Fletcher et al. 2013), which can make

interpretations of links between neutral genetic diver-

sity and invasiveness difficult (Dlugosh et al. 2015).

Uniparentally reproducing species may promote inva-

siveness if (1) certain clonal lineages are better

adapted, (2) there is a shift in reproductive mode (Le

Cam et al. 2020; Wellband et al. 2017) or, (3)

quantitative genetic variation associated with poly-

genic traits is retained despite bottlenecks or founder

events (Barrett 2015). Our data shows the highest

proportion of clonal reproduction in our seemingly

least invasive marina population, thereby contrasting

with the hypothesis that clonal reproduction should

increase invasive success. However, the high propor-

tion of unique colonies included in our dataset suggest

that there is a strong influence of multiple introduc-

tions and/or sexual reproduction in our populations.

The tendency of D. vexillum colonies to fuse, forming

chimeras, further complicates the possible interpreta-

tions of our dataset. For example, Watts et al. (2019)

show that changes in allele frequencies produced

disparate genetic groupings when comparing datasets

that included versus those that excluded genetic data

from chimeric colonies. Evidence of chimeras was low

in this dataset (2.7%) in contrast to other regions

(Clancy 2015; Watts et al. 2019; Casso et al. 2019b)

suggesting that the impact of chimeras on estimations

of genetic clusters would be small in our study area.

While some of the genetic mechanisms involved in

the success of INNS in general (Stapley et al. 2015;

Tepolt and Palumbi 2015; Hawes et al. 2018a; Gleason

2019), and D. vexillum, specifically [e.g., plasticity

(Ordóñez et al. 2015), epigenetics (Hawes et al.

2018b, 2019), and microbiome effects (Casso et al.

2020)], have been identified, many questions remain

unanswered. Our results highlight the importance of

genetic tools in invasion management, in particular for

tracking secondary spread and evaluating the risk of

invasiveness in new introductions.
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