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25 Abstract

26 1. Coastal salt marshes are threatened by erosion from storminess and sea level rise, with resulting 

27 losses in flood protection, wildlife and recreational space. Although more than $1billion has been 

28 spent to reconcile losses, restoration has had varying success because of poor survival of planted 

29 patches in challenging wave and current conditions. Marsh expansion after colonisation or re-

30 planting is regulated by positive and negative feedbacks between vegetation density and 

31 sediment capture. Dense vegetation stimulates sediment capture and vertical patch growth, but 

32 negatively constrains patch expansion by concentrating hydrological energy into erosion gullies 

33 along patch edges. Conversely, low-density vegetation may not simulate enough sediment 

34 capture, which increases plant dislodgement mortality. The strengths of positive and negative 

35 feedbacks will vary with wave exposure, but this has never been tested in natural conditions. 

36 2. We observed density-dependent sediment feedbacks, survival and lateral expansion by Spartina 

37 anglica patches (0.8×0.8m) planted at three levels of vegetation density, at each of three levels of 

38 wave forcing (three sites). 

39 3. We found interactive effects of plant density and forcing on the strength of positive and negative 

40 feedbacks. Density-dependent feedbacks only emerged in moderate and exposed conditions: 

41 classic marsh tussock patch-shapes, which arise due to combined positive (vertical growth) and 

42 negative (gullies) feedbacks, were only associated with high density vegetation under exposed 

43 conditions. At high exposure, survival was enhanced by dense planting, which diverted energy 

44 away from vegetation. In sheltered conditions, expansion was greatest at medium density, while 

45 dense patches had high mortality and erosion. 

46 4. Synthesis and applications. Success of wetland restoration clearly hinges on considering 

47 interactions between environmental stress and planting density. In challenging high-exposure 

48 settings, dense planting in large patches should maximise success, as plant facilitation boosts 

49 sediment capture and negative edge effects (gullies) will represent a diminished proportion of 

50 larger patches. Yet, benefits of dense planting will switch from positive (facilitation) to negative 
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51 (competition) with reduced environmental stress, when moderate-density planting might be 

52 optimal. Switches along stress gradients between positive and negative feedbacks are common 

53 across ecosystems. We call for wider integration of facilitation and stress-gradient principles into 

54 restoration design to safeguard restoration successes. 

55

56 Keywords: Positive and negative feedbacks, Planting, Restoration, Saltmarsh, Sediment, Spartina 

57 anglica, Stress-gradient hypothesis, Survival and expansion

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Page 3 of 50 Journal of Applied Ecology



4

77 Introduction 

78 Fifty percent of global salt marsh habitat was lost in the last century (Silliman et al. 2015). Loss of salt 

79 marsh habitat is a concern since they offer important ecosystem services, such as being important 

80 nursery habitats for fisheries species (Kneib, 1997), sequestering rich stores of ‘blue carbon’ (Himes-

81 Cornell, Pendleton, & Atiyah 2018) and acting as effective natural flood protectors along global 

82 coastlines (Möller et al. 2014). Salt marshes are now facing increased pressures from emergent sea 

83 level rise, increased storminess and diminishing sediment supply (Mariotti & Fagherazzi, 2010; Kirwan 

84 & Megonigal, 2013; Leonardi, Ganju, & Fagherazzi 2016) and it is likely that irreversible erosional 

85 switches from marshland to unvegetated mudflats will become more frequent. To date, over 1 billion 

86 US $ has been spent on restoration to tackle worldwide salt marsh losses (Silliman et al. 2015). Despite 

87 this investment, the majority of restoration projects either fail completely (Cunha et al. 2012; Tanner 

88 & Parham, 2010) or result in only partial recovery of the ecosystem (Rey Benayas et al. 2009; Suding, 

89 2011). This could be due to poor restoration designs and justifies the need to re-consider planting 

90 strategies (Silliman et al. 2015; Derksen-Hooijberg et al. 2018).

91 Current restoration designs for seagrasses, mangroves, corals and salt marshes focus on 

92 maintaining empty spaces between out-planted propagules (dispersed design), to minimise negative 

93 intra-species interactions, such as competition (Gedan & Silliman, 2009; Silliman et al. 2015). Yet, 

94 these practices ignore current ecological theory that positive species interactions can facilitate 

95 organism success (Gedan & Silliman, 2009). They also neglect that species interactions (i.e. positive 

96 and negative) vary across environmental gradients, as implied by the stress-gradient hypothesis 

97 (Bertness & Callaway, 1994; Callaway & Walker, 1997), and hence that restoration designs need to be 

98 tailored to the environmental conditions at the site. Discussions about wetland planting configurations 

99 call for a switch to clumped designs to facilitate positive species interactions (Gedan & Silliman, 2009; 

100 Silliman et al. 2015). Here we combine observations of sediment feedbacks, plant survival and 

101 vegetation expansion to assess how optimal planting configurations vary across gradients in physical 

102 stress. 

Page 4 of 50Journal of Applied Ecology



5

103 The key to successful salt marsh establishment and expansion is to promote positive 

104 interactions between the vegetation and the surrounding sediment at the pioneer stage (Balke et al. 

105 2014). Spartina anglica is a dominant pioneer species in the lower intertidal zones of western 

106 European salt marshes, owing to its ability to tolerate harsh environmental conditions, such as 

107 frequent tidal inundation (Bouma et al. 2009). Spartina is therefore a model species to study 

108 mechanisms of marsh establishment and expansion (Balke et al. 2012). Initial development of Spartina 

109 patches has the consequence of dissipating wave energy. This can have both positive and negative 

110 feedbacks on marsh development. While energy dissipation stimulates vertical sediment build-up 

111 (‘accretion’) inside the vegetation canopy (Fig. 1), thus enhancing plant survival at higher elevations, 

112 it can also lead to erosion gullies forming immediately outside the vegetation, resulting in a restriction 

113 of lateral patch expansion (Fig. 1) (van Hulzen, van Soelen, & Bouma 2007; van Wesenbeeck et al. 

114 2008; Bouma et al. 2009).     

115 Plant density determines switches between positive and negative sediment feedbacks, which 

116 ultimately affects the potential for the vegetation to develop into a bigger marsh (Bouma et al. 2005, 

117 2007). High density Spartina vegetation encourages greater sediment deposition by reducing 

118 hydrological energy inside the canopy, leading to higher plant survival (Bouma et al. 2005, 2009; van 

119 Hulzen, van Soelen, & Bouma 2007; van Wesenbeeck et al. 2008). At the same time, deeper erosion 

120 gullies form immediately outside dense vegetation as the energy is deflected and concentrated, which 

121 limits the opportunity for lateral patch expansion (van Hulzen, van Soelen, & Bouma 2007; van 

122 Wesenbeeck et al. 2008; Bouma et al. 2009). At low vegetation densities, less sediment deposition 

123 occurs inside the vegetation canopy as the plants deflect less energy, leaving the plants prone to 

124 mortality via dislodgement (van Hulzen, van Soelen, & Bouma 2007; van Wesenbeeck et al. 2008; 

125 Bouma et al. 2009). Yet, low density patches have less gully formation at the vegetation boundary, 

126 thus retaining the potential for lateral expansion (van Hulzen, van Soelen, & Bouma 2007; van 

127 Wesenbeeck et al. 2008; Bouma et al. 2009). Plant density-linked feedbacks are likely to vary with the 

128 amount of wave forcing in the system (Bouma et al. 2009; Bruno et al. 2017). For example, dense 
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129 vegetation in low wave forcing might encourage sediment deposition without generating erosion 

130 gullies, because wave energy is too low to scour the substrate along the patch perimeter. We propose 

131 that an interaction between wave forcing and plant density regulates switches from positive feedback 

132 conditions of marsh vertical growth and plant survival to negative feedback constraints on lateral 

133 expansion. 

134 Here we ask whether density-dependent sediment feedbacks, plant survival and vegetation 

135 lateral expansion vary with the amount of wave forcing in the system to affect the success of replanted 

136 patches of Spartina anglica. We hypothesise that (1) wave forcing will affect density-dependent 

137 sediment feedbacks in Spartina patches, with effects such as sediment vertical accretion (positive 

138 feedback) and gullying (negative feedback) becoming more prominent as both vegetation density and 

139 wave forcing increase. (2) Plant survival will be highest under sheltered wave forcing conditions, and 

140 in the densest patches. (3) Patch lateral expansion will be lowest under exposed wave forcing 

141 conditions, and in the densest patches, due to accentuated scouring around the patch perimeter.    

142

143

144

145

146

147

148

149

150

151

152

153

154
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155 Materials and methods

156 Study sites and experimental design

157 A manipulative field experiment was conducted in Red Wharf Bay (53°19’03.1” N and 4°11’03.0” W) 

158 on the north east coast of the isle of Anglesey, North Wales (United Kingdom) (Fig. S1). Red Wharf Bay 

159 is characterised by broad sand flats and low-lying sandy beaches. The spring tidal amplitude of the bay 

160 reaches 7.6m, with water levels ranging from 0.4 to 7.6m (relative to chart datum). Waves are 

161 generally wind generated. Experiments were performed at three sites within the bay, to represent a 

162 wave-forcing gradient; a wave exposed site in the east, a sheltered site in the west and a moderately 

163 exposed site in the middle (Fig. S1). The three sites were located ~1km apart and 5.25 – 5.85m above 

164 chart datum. Wave observations (September - October 2018) confirmed significant differences in 

165 wave heights between the three sites (Fig. S2, p-value < 0.001). Wave heights during average days and 

166 stormy days were 0.2m and 0.4m respectively at the exposed site in the east, 0.1m and 0.3m at the 

167 moderate site and 0.02m and 0.1m at the sheltered site in the west (Fig. S3). Tidal current speeds did 

168 not vary significantly between the three sites with average flows of 0.44, 0.37 and 0.61 m/s at the 

169 exposed, moderate and sheltered sites respectively (Fig. S4, p-value = 0.23). The sediment was 

170 predominantly fine sand at all three sites, with some differences in silt-clay and medium-coarse sand 

171 percentages (Table S1).      

172 Between June and August 2016 Spartina was transplanted to create plots of three density 

173 treatments (low, medium and high) (Fig. 2a) at each of the three wave exposure sites. Each density 

174 treatment was replicated five times at each of the three exposure sites, giving a total of 45 plots (*3 

175 sites *3 densities *5 replicates) (Fig. 2b). Replicates were blocked and treatments were allocated 

176 randomly within the blocks. Clumps of Spartina consisting of 15-20 shoots and associated roots and 

177 each covering approximately 0.1 x 0.1m were dug up from the marsh at each site and transplanted 

178 into 0.8 x 0.8m plots spaced >5m apart. Five clumps were used to create low density treatments (~80-

179 100 shoots per plot), 16 clumps for medium density treatments (~240-320 shoots per plot) and 32 

180 clumps for high density treatments (~480-640 shoots per plot) (Fig. 2a).   
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181 Cross-plot sediment elevation profiles

182 Net change in sediment elevation were measured inside and immediately outside the planted plots 

183 using Sedimentation-Erosion-Bars (SEB’s) (Nolte et al. 2013) (Fig. 2c). For each vegetated plot, four 1m 

184 long wooden posts were inserted into the sediment with 0.5m above ground: two posts on the 

185 landward side of the vegetation and two on the seaward side (Fig. 2c). Posts were placed 1m away 

186 from the vegetation to avoid scouring effects. These posts marked the boundaries of the measured 

187 ‘SEB areas’ (Fig. 2c). During observations of sediment elevation, a horizontal beam was temporarily 

188 clamped onto the seaward and the landward posts to make two trestles (Fig. 2c); a straight-edge beam 

189 was then placed from the landward to the seaward trestles, and sediment elevation was quantified as 

190 the vertical distance from straight-edge beam to the sediment surface. Sediment elevation was 

191 measured at five points, referred to as measurement points A1, A2, B, C1 and C2, to create a cross-

192 shore profile of the SEB area (Fig. 2d): points were in the centre of the vegetation, and at 0.4 and 0.8m 

193 away from the centre of the vegetation in both directions (Fig. 2d). SEB measurements were taken in 

194 September 2016 and August 2017. Net sediment elevations were calculated by subtracting the initial 

195 height measurements (September 2016) from the final measurements in August 2017, a year after 

196 the experiment started, and after a full growing season in 2017. August-September marks the peak of 

197 the salt marsh biomass in the UK. August-September was, therefore, both an adequate time of the 

198 year to start and complete the experiment.

199

200 Sediment Digital Elevation Models (DEMs)

201 Before the initial and final measurements, photographs were taken of each SEB area by walking 

202 around the outside of the posts and pausing to take a photograph every 0.5m along the SEB periphery. 

203 Agisoft Photoscan Professional software was used to recover three-dimensional scene geometry from 

204 the photos, using a technique called structure from motion (SfM; Ullman, 1979). Ground control was 

205 achieved in the field with a Differential Global Positioning System (Leica dGPS GS08 GNSS) to an 

206 accuracy of ± 0.1cm. Ground control points (GCPs) were taken from the tops of the SEB posts, ensuring 
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207 an even distribution of GCP’s across the modelled area (Betts & DeRose, 1999). Digital Elevation 

208 Models (DEMs) were constructed from the triangulated imagery in Agisoft Photoscan Professional 

209 software by matching pixels or patterns of pixels (as in Betts & DeRose, 1999). The five replicates at 

210 each of the three sites were combined to create mean DEMs for each treatment, per site. This was 

211 done using the raster package in R (Hijmans, 2015). DEMs were then imported into ArcGIS (10.4) for 

212 further analysis. In ArcGIS (10.4), the contour lines were superimposed onto the DEMs at 0.02m 

213 intervals to calculate a percentage of the SEB areas that had a net increase in sediment elevation (i.e. 

214 sediment deposition), a net decrease in sediment elevation (i.e. surface erosion) or had no change in 

215 sediment elevation (i.e. remained stable) at the end of the measurement period (August 2017).

216

217 Plant survival

218 Plant survival was quantified using two approaches. For low and medium density plots, the number of 

219 clumps remaining at the end of the experiment (August 2017) were observed in the field and survival 

220 was equated to change in clump abundance (September 2016 – August 2017, %). For high density 

221 plots, survival was determined using the Digital Elevation Models: vegetated areas were identified by 

222 pixel classification and outlined by polygons, and survival was quantified as percent change of 

223 vegetated areas (September 2016 – August 2017, %). We did not use the same approach to quantify 

224 survival in low-medium and high density plots because (a) vegetation was too dense in high-density 

225 plots to permit clump counting, and (b) DEM pixel resolution at the margin of individual clumps was 

226 sometimes insufficiently sharp to accurately delineate clump edges (wind moving plants: blurred 

227 edges in photos). Our mixing of approaches could lead to overestimation of survival in low/medium 

228 densities relative to high density plots. We recommend the reader treats our survival results with 

229 some caution. 

230

231

232
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233 Patch lateral expansion

234 Lateral patch expansion was quantified in ArcGIS (10.4) using the DEMs. Polygons were drawn around 

235 vegetated areas at the beginning (September 2016) and at the end (August 2017) of the observation 

236 period. Vegetated areas at the end of the experiment were subtracted from areas at the beginning of 

237 the experiment to calculate a net change in the vegetated area (August 2017 minus September 2016, 

238 %).

239

240 Data Analysis

241 The response variable net change in sediment elevation was analysed using a linear mixed effects 

242 model with the fixed factors: wave forcing (three levels: exposed, moderate and sheltered), vegetation 

243 density (three levels: low, medium and high) and position of the sample across the cross-plot elevation 

244 profile (five levels: A1, A2, B, C1, C2). This model included the random effect of plot (45 levels, the 45 

245 plots) on the intercept and on the slope, which allowed for a random shift around the intercept for 

246 each plot, but also allowed for different slopes for each position within the plot. The random intercept 

247 and slope model was clearly better than any other model with random effects, and was also better 

248 than the plain linear model according to the Akaike Information Criterion and Likelihood ratio tests 

249 (Zuur et al. 2009). 

250 The response variables percentage of plot areas that accreted, percentage of plot areas that 

251 eroded, percentage of plot areas that remained stable, percentage of plant survival, and percentage 

252 of lateral patch expansion were analysed using linear models to test for the effects of the fixed factors 

253 wave forcing (three levels: exposed, moderate and sheltered) and vegetation density (three levels: 

254 low, medium and high). 

255 Normality and homogeneity of variances were checked graphically by inspecting residuals and 

256 fitted values. All response variables followed the assumption of normality without need for data 

257 transformation. However, in some cases, there were obvious signs of heteroscedasticity in the 

258 residuals, and therefore the variance structure of the model was specified with weights using the nlme 
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259 package (Pinheiro et al. 2011, Zuur et al. 2009). Tukey HSD post-hoc tests were performed on the data 

260 to determine treatment-specific differences within significant model variables. All statistical analyses 

261 were performed in the open-source statistical software R (R Development Core Team 2017). 

262

263 Results

264 Net changes in surface elevation

265 Wave forcing had a significant effect on the net change in sediment elevation within and around 

266 Spartina anglica patches (Fig. 3; Table S2). With increase in wave forcing, the cross-shore profile 

267 changed from relatively flat (sheltered), to sloping (moderate exposure) to humped (exposed), with 

268 the landscape dipping on the seaward side of patches and lifting over the vegetation itself (Fig. 3). 

269 Sediment erosion always occurred on the seaward side, facing the waves, whilst accretion mainly 

270 occurred in the middle and on the landward side sheltered from waves (Figs 3-4; Table S3). While the 

271 seaward to landward lift in the landscape tended to steepen with increase in plant density (Fig. 3; 

272 Table S2), it was wave energy that determined plant density effects, highlighting the existence of a 

273 wave forcing x plant density interaction (Fig. 3; Table S2). Specifically, the cross-plot elevation profiles 

274 remained relatively flat at the sheltered site, regardless of vegetation density, whilst medium and high 

275 density patches caused strong sedimentation and erosion patterns at the moderate and exposed sites, 

276 leading to the formation of dome-shaped tussocks (Figs 3-4). Tussock formation was especially marked 

277 in high density patches at the moderate and exposed sites (Figs 3-4, S5; Table S3). Patch shape 

278 formation as a result of sediment depositioning and erosion gully formation was therefore most 

279 consistent around the densest patches at the most exposed sites (Figs 4 & S5). The influence of wave 

280 forcing, vegetation density, the position of the sampling points across the cross-plot elevation profile 

281 and their interactions explained 51% of the variance of the net sediment elevation change within the 

282 plots. Including the random effect of plots (on the intercept and slope of the response variable) 

283 increased the predictive power of our model to 95% (Table S2). 

284
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285 Plant survival

286 Wave forcing, planting density and their interaction had a significant effect on plant survival (Fig. 5; 

287 Table S3). As with net sediment change, density-dependence only became obvious as wave forcing 

288 increased: low, medium and high density plots in the sheltered and moderate sites all had similar 

289 survival rates, while survival at the high density plots in the exposed site was 25 and 50% higher than 

290 in the low and medium density plots respectively (Fig. 5; Table S3, Table S4). The influence of wave 

291 forcing, vegetation density and their interaction explained 45 % of the variance in plant survival (Table 

292 S3).    

293

294 Patch lateral expansion

295 Wave forcing, planting density and their interaction had significant effects on patch lateral expansion 

296 (Fig. 5; Table S3), with greater expansion at the sheltered than the moderate and exposed sites. 

297 Vegetation density also affected patch growth, overall generating significantly higher expansion in 

298 medium than high and low density patches (Fig. 5; Table S3). Yet, density effects were moderated by 

299 wave exposure: they were only significant at the sheltered site, where medium density patches 

300 expanded more (221%) than other density patches (Fig. 5; Table S3), again showing that wave forcing 

301 is a determinant of density effects. The influence of wave forcing, vegetation density and their 

302 interaction explained 77% of the variance associated with patch lateral expansion (Table S3).     

303

304

305

306

307

308

309

310
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311 Discussion

312 This study shows that wave forcing regulates the strength and direction of plant density-dependent 

313 feedbacks on sediment distribution (positive sediment trapping and negative gully formation) – a 

314 process that ultimately determines whether vegetation patches in fluvial systems and coastal 

315 wetlands expand or erode (Corenblit et al. 2009; Zong & Nepf, 2010; Duarte et al. 2013; van Maanen, 

316 Coco, & Bryan 2015). Whilst previous studies have demonstrated plant density effects on sediment 

317 feedbacks in flume settings (e.g. Bouma et al. 2009), the present study goes further to show, for the 

318 first time in a natural setting, and over much longer time scales than previous studies, that 

319 hydrodynamics affect the strength of density-dependent sediment feedbacks across a forcing 

320 gradient. In the present study, feedbacks became more prominent with increasing vegetation density, 

321 but only under the highest wave force conditions. High density vegetation patches behaved as a solid 

322 unit in exposed conditions, deflecting wave energy away and encouraging sediment build-up, leading 

323 to the formation of classic dome-shaped tussocks (van Wesenbeeck et al. 2008). While the deflection 

324 of wave energy boosted plant survival, it also generated erosion gullies around the vegetation, 

325 discouraging patch lateral expansion. High density patches in sheltered wave conditions had no major 

326 sediment accretion and no gully formation, but had high mortality and smaller finishing patch sizes 

327 than high density treatments at higher levels of wave exposure, possibly as a result of increased 

328 within-patch plant competition.  

329 Similar density-dependence has been described in other systems where scale-dependent (i.e. 

330 within and outside the vegetated patch) positive and negative effects fluctuate with density or 

331 biomass (Rietkerk et al. 2002; van de Koppel et al. 2005). For example, diatom-aggregated biofilms 

332 trap fine sediments on mudflats to create hummocks that prevent them from being eroded away, but 

333 simultaneous erosion gullies form around the hummocks preventing the diatoms from aggregating 

334 outside the hummock (Ysebaert, Hart, & Herman 2009). In another example, mussels aggregate to 

335 protect themselves from erosion by waves and currents, but this has a simultaneous negative effect 

336 as algal food resources are depleted, thus reducing their survival inside the aggregations (van de 
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337 Koppel et al. 2005). The strength of these feedbacks are strongly dependent on the amount of stress 

338 in the system (e.g. waves, currents, light, temperature) and our findings validate, in a wave forcing 

339 context, the stress-gradient hypothesis, which predicts a switch in the relative importance of positive 

340 and negative feedbacks between individuals along gradients in abiotic conditions (Bertness & 

341 Callaway, 1994; Bruno & Bertness, 2001). 

342 Under high wave force conditions, wetland plants benefit from the additional protection 

343 provided by neighbouring individuals within high-density patches, thus promoting a positive 

344 (facilitative) interaction between individuals (Bertness & Shumway, 1993; Callaway & Walker, 1997; 

345 He, Bertness & Altieri, 2013). In contrast, under lower wave force conditions, the benefits of 

346 neighbouring plants absorbing hydrological energy are outweighed by the negative effects of plant-

347 plant competition for light, water and nutrients (Bertness & Callaway, 1994; Callaway & Walker, 1997; 

348 He, Bertness & Altieri, 2013). Species interactions may shift from facilitative to competitive with 

349 increasing environmental stress (Bertness & Callaway, 1994; He, Bertness & Altieri, 2013), as observed 

350 across a number of ecosystems (Bertness & Callaway, 1994; Bertness et al. 1999; Choler, Michalet, & 

351 Callaway 2001). For example, in alpine forests, growth facilitation between individual trees increases 

352 at stressful higher altitudes, whilst competition is the dominant interaction at more benign lower 

353 altitudes (Choler, Michalet, & Callaway 2001). On rocky shores, species interactions switch from 

354 positive to negative with decreasing elevation, as individuals compete for space on the more 

355 frequently tidal-inundated low shore (Bertness et al. 1999). 

356 Vegetation patchiness that arises from the feedback processes described here is frequently 

357 seen in salt marsh pioneer zones under natural conditions (van Wesenbeeck et al. 2008; Wang & 

358 Temmerman, 2013). The formation of dome-shaped tussocks was thought purely the outcome of 

359 plant engineering, and to be particularly pronounced in high density vegetation (van Hulzen, van 

360 Soelen, & Bouma 2007; Bouma et al. 2009). Here, we show that tussocks arise from an interaction 

361 between vegetation density and hydrodynamics. Under lower wave forcing conditions, Spartina 

362 should be able to exist at higher densities as the competitive interactions observed here, and the 
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363 absence of erosional sediment feedbacks at the sheltered site is likely to permit the expansion of high 

364 density tussocks, as observed elsewhere (Bouma et al. 2009). 

365 The study shows that wave exposure is the main cause of vegetation-sediment feedbacks that 

366 lead to the formation of vegetation tussocks and erosion gullies. This is new; previous studies have 

367 focused on currents as the main cause for tussock formation (van Wesenbeeck et al. 2008; Bouma et 

368 al. 2009, 2013). Waves are shallow in marsh areas, typically <0.5m as in the present study; yet they 

369 create erosional shear stresses on the seabed that match or exceed those of currents (Shi et al. 2012, 

370 2017). For currents, dense vegetation diverts forcing around patches, causing acceleration of 

371 hydrological energy at the patch perimeter, which increases shear stress to form erosion gullies (van 

372 Wesenbeeck et al. 2008; Bouma et al. 2009, 2013). Here, we had a natural situation with both waves 

373 and currents, where only wave forcing differed between the tree exposure sites, suggesting that wave-

374 current interactions generated the observed differences in tussocks and gully formation between 

375 sites. The physics behind wave-current interactions on erosion processes are complex and not well 

376 understood (Shi et al. 2012, 2017; Maza et al. 2015; Yang & Irish, 2018). We propose a few simple 

377 principles that might explain the observed wave-current induced sediment patterns around the 

378 vegetation patches (Figure 6). We think flow deflection around the patch is key to gulley formation 

379 (Figure 6a). Having waves in addition to current flow will likely strengthening the flow deflection effect 

380 around the patch (Figure 6b) and bring more sediment into motion through augmenting shear stress 

381 (Shi et al. 2017). This effect should be strengthened by wave refraction, by creating stronger waves 

382 alongside vegetation patches (Figure 6b). Wave reflection by (dense) vegetation is also likely to boost 

383 turbulence and erosion at the seaward-side of the tussock (Figure 6c), putting sediment into 

384 temporary suspension only to settle out over the patch, when the vegetation attenuates the 

385 hydrological energy, causing patches to grow vertically into tussock shapes. These explanations of the 

386 patterns we observed require further testing. Obtaining a full understanding of the physical processes 

387 associated with wave-current-vegetation interactions require dedicated hydrodynamic research in 

388 controlled experimental conditions that is beyond the scope of present study.
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389 Implications for management: restoration

390 Our study findings are helpful for choosing planting configurations in salt marsh restoration. 

391 Principally, they highlight the need to consider wave forcing conditions before deciding on planting 

392 designs. Figure 7 summarises the outcomes of low, medium and high density transplanting of Spartina 

393 on sediment feedbacks (Fig. 7a) and patch survival and expansion (Fig. 7b). It illustrates, for instance, 

394 that planting low density vegetation at sheltered sites results in little or no sediment depositioning 

395 (signified by light coloured box in top-left corner of Fig 7a), with only moderate plant survival and 

396 patch lateral expansion (indicated by a medium shade of green in the top-left box of Fig 7b), despite 

397 lack of gully formation. Medium density planting might be a better option in sheltered conditions, as 

398 it should maximise survival and patch expansion. At exposed sites, planting low-density vegetation 

399 results in modest sediment deposition and mild erosion gully formation outside patches (Fig 7a, top-

400 right box), offering only moderate scope for plant survival and patch expansion (Fig 7b, top-right box). 

401 Planting high density patches in wave exposed conditions will maximise plant survival (Fig 6b, bottom-

402 right box) and sediment capture (Fig 7a, bottom-right box); however, patch expansion will be 

403 constrained by erosion gullies (Fig 7b). To overcome the latter issue, restoration success at high 

404 exposure might be boosted by planting dense vegetation in large patches (Gittman et al. 2018), 

405 because plant survival will be encouraged and negative edge effects (gullies) will represent a 

406 diminished proportion of the planted area (Angelini & Silliman, 2012; Silliman et al. 2015; Gittman et 

407 al. 2018). Interaction of patch size and planting density should also be considered at less exposed 

408 conditions. Thus, planting moderate-density vegetation in smaller patches at wave-sheltered sites will 

409 minimise competition between individual plants and encourage expansion over longer time scales. 

410 Here we have considered wave forcing as the main stressor for young patches of Spartina. We do not 

411 know whether the documented feedbacks to wave forcing will persist in multi-stressor contexts 

412 (salinity, temperature, nutrients, etc.), and whether patch size and planting density will determine 

413 patch survival in a similar way then. Larger patches of Spartina do recover better from drought 
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414 conditions (Angelini & Silliman, 2012) and increased inundation (Gittman et al. 2018) than smaller 

415 patches, but it is not known how wave forcing affects such stress to patch-size relationships. 

416 Tussock formation in wetlands is influenced by sediment characteristics and is most 

417 pronounced in erosion-prone sandy substrates, which are more likely to form gullies than erosion 

418 resistant silty substrates (Van Hulzen et al. 2007; Balke et al. 2014). Here, the sediments were coarsest 

419 at our most exposed site. Arguably, gullies, and their restrictions on patch expansion, might not have 

420 emerged at the high-energy site if the sediments had been finer-grained. We therefore cannot dismiss 

421 that fine sediments would moderate plant-sediment feedbacks to accommodate lateral expansion of 

422 high-density plantations in high energy settings. In natural conditions, it is difficult to disentangle the 

423 effects sediments and hydrology on gully and tussock formation, as sediment coarseness is positively 

424 correlated with hydrological energy (Komar, 1976). Future research may consider factorial 

425 experiments in laboratory/flume conditions or across multiple sites with different sediment-hydrology 

426 characteristics to disaggregate the effects of hydrology, planting density and sediment characteristics 

427 on planting success.  

428 Overall, our study confirms that within or between species facilitation is an important and 

429 simple ecological process to accommodate for enhanced restoration success (Silliman et al. 2015; 

430 Derksen-Hooijberg et al. 2017). However, the study here shows facilitation is not a pervasively positive 

431 force to capitalise on in restoration projects: it depends on the level of stress encountered at the 

432 restoration site, with the positive effects of facilitation switching to negative interactions of 

433 competition in low-stress situations, in alignment with the stress-gradient hypothesis (Gedan & 

434 Silliman; Silliman et al. 2015). In plant systems, the simple route to getting this right is through setting 

435 planting density in accordance with the level of environmental stress encountered at the restoration 

436 site: higher stress, higher planting density for boosted facilitation. A significant proportion of wetland 

437 restoration projects have failed in the past, because interactions between plant ecology and 

438 environmental stresses were not sufficiently taken into consideration. Thus, most mangrove 

439 restoration in the Philippines met with little success, because plantations were done without due 
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440 consideration for hydrological stresses at planting sites (Samson & Rollon, 2008).  We call for wider 

441 integration of facilitation and stress-gradient principles into restoration design to safeguard 

442 restoration successes in a diversity of ecosystems. 
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656 Fig 1. Positive within-canopy and negative outside-canopy sediment effects of marsh vegetation on a 

657 tidal flat. Green arrow represents positive sediment vertical accretion, whilst the red arrow represents 

658 the formation of expansion-restricting erosion gullies next to the vegetation patch.  
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691 Fig 2. (a) Three vegetation density plots (0.8 x 0.8m) created from clumps of Spartina consisting of 15-

692 20 shoots and associated roots, giving 80-100 shoots (Low density), 240-320 shoots (Medium) and 

693 460-640 shoots (High). (b) Layout of plot distribution (5/treatment) at a Sheltered, Moderately 

694 exposed and Exposed site. Grey, black and white squares represent Low, Medium and High density 

695 plots. (c) Four wooden posts (Sedimentation-Erosion-Bars, SEBs), one per corner, framed each 

696 experimental plot, and delineated the boundaries of the SEB observation area. The three horizontal 

697 bars were only in place whilst taking sediment elevation measurements. Observations of sediment 

698 elevation were made by measuring down from the horizontal bar centrally in the photo. (d) Vertical 

699 view of the position of the horizontal bar (black line) over the vegetation patch (green square), with 

700 the five positions (A1 – C2: seaward to landward direction) where sediment elevations were measured 

701 to generate the cross-plot sediment elevation profile. 
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727 Fig 3. The mean ± std. error net change in sediment elevation, from the first (September 2016) to the 

728 last observation (August 2017) across cross-plot profiles with high, medium and low density 

729 vegetation at the exposed, moderate and sheltered sites (n = 225). X-axis codes: A1 and A2 represent 

730 measurements taken in front of the patch (seaward side), B in the middle of the patch, and C1 and C2 

731 behind the patch (landward side). Green rectangle on x-axis represents the vegetated area of the plot.
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752 Fig 4. Schematic representation of the tussock shapes and profiles formed by high density vegetation 

753 at the sheltered, moderate and exposed sites (n = 15). The mean Digital Elevation Models (DEM) 

754 represent sediment bed elevations (blue to red colouring = low to high elevations) in the 2×2m DEM 

755 areas. The black arrow points towards the sea. Tussock shapes drawn from the percentage of 
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778 Fig 5. The mean ± std. error survival (of the originally planted area) and expansion (area cover of plants 

779 outside the planted areas) of low, medium and high density Spartina patches at the sheltered, 

780 moderate and exposed sites (n = 45). Significant differences between the sites are indicated as 

781 resulting from post-hoc tests (*, p < 0.05). 
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803 Fig 6. Interactions of current flow and waves on erosion around vegetation patches. (a) Diversion of 

804 the water current around the vegetation patch accelerates hydrological energy and associated 

805 erosion along the sides of the vegetation patch (van Wesenbeeck et al. 2008). (b) Incoming waves 

806 accentuate the deflection of current flow around the patch, to augment erosive forces along patch 

807 sides (dashed circle). (c) Turbulence associated with wave deflection at the seaward side of the 

808 patch erodes sediments in front of the patch. 
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837 Fig 7. Conceptual representation of the effects of vegetation density and wave exposure on (a) 

838 sediment feedbacks (sediment depositioning/erosion, gully formation), and (b) the survival and 

839 expansion of planted areas. The colour gradient from dark green to white signifies a decrease in the 

840 strength of plant sediment feedbacks. For example, for the low-density/low-exposure combination in 

841 figure (a) the white box implies minimal plant feedback on sediment deposition and erosion, with no 

842 gully formation. In figure (a) the high density/exposure box is dark green, signifying strong plant 

843 feedback on sediment, including negative effects like gully formation. In (b) colour changes from dark 

844 green to white indicate a switch from high to low patch survival and expansion. Thus, for medium-

845 density planting in sheltered conditions the box is dark green, as the potential for survival and 

846 expansion is maximal. . 
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Appendix S1. 

Methods for measuring sediment grain size, waves and current velocities 

Sediment grain size

Soil samples of ~10g (fresh mass) were extracted from the top layer (0-30cm) of the sediment at each 

site and then dried in an oven (105°C, 72 h). The dried samples were then ground and sub-sampled 

and any organic matter in ~3g of soil was digested using hydrogen peroxide prior to the grain size 

analysis. We quantified differences in sediment grain size by classifying the soil into 33 size fractions 

from 0.2-2000.0 um (Beckman Coulter LS 13 320 Laser diffraction particle size analyser) and grouped 

according to the Wentworth scale: clay (0.02-3.9 um), silt (3.9-63.0 um), fine sand (63-256 um), 

medium-coarse sand (256-2000 um). 

Waves

We quantified differences in wave forcing by deploying pressure sensors (OSSI-010-003C-01; Ocean 

Sensor Systems, Inc.) simultaneously at the three sites over 1 month (September-October 2018). The 

pressure sensors were placed 0.05m above the seabed, and they measured at a frequency of 5Hz at 

10-minute intervals. Thus, 3000 data points were generated at every 10-minute interval. The mean 

water level in an interval was determined by averaging all the data points. The wave analysis was 

based on pressure fluctuations. The attenuation of the pressure signals with water depth was 

corrected to derive bulk wave parameters, e.g. significant wave height (HS) (Tucker & Pitt, 2001). 

Current velocities 

We quantified differences in current velocities by deploying Acoustic Doppler Velocity meters (ADVs, 

Nortek Vector) simultaneously at the three sites over a spring tide in April 2018. The ADVs were 

placed 0.25m above the seabed, and they measured at a frequency of 0.5Hz at 30-minute intervals.
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Fig S1. (i) Location of the experimental sites in Red Wharf Bay, with a gradient in wave exposure: (A) 

Sheltered, (B) Moderate and (C) wave Exposed. (ii) Location of Red Wharf Bay on the south-east coast 

of Anglesey, North Wales. (iii) Location of Anglesey in the United Kingdom.
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Differences in maximum significant wave heights measured at the sheltered, moderate and exposed 

sites over the same observation period (September-October 2018). Significant differences in 

maximum wave heights were detected between the three sites, with the highest waves occurring at 

the exposed site, and the shortest waves at the sheltered site.  
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Fig S2. The mean ± std. error difference in maximum wave heights between the sheltered, moderate 

and exposed sites over a period of 1 month (September - October 2018). 
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Differences in significant wave heights measured at the three sites over the same observation period 

(September-October 2018). Waves were highest at the exposed site, moderate at the moderate site 

and shortest at the sheltered site during both average and stormy days. 

(a) Exposed Site 
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(b) Moderate Site
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(c) Sheltered Site

Fig S3. Mean water depths and significant wave heights measured at the three sites (a) Exposed, (b) 

Moderate and (c) Sheltered over the observation period (September-October 2018). 
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Differences in the current velocities measured at the sheltered, moderate and exposed sites over the 

same observation period (April 2018). No significant differences in current velocities were detected 

between the three sites. 
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Fig S4. The mean ± std. error differences in the current velocities between the sheltered, moderate 

and exposed sites over a spring tide in April 2018. 

Page 38 of 50Journal of Applied Ecology



Fig S5. Percentage of the plot areas (i.e. within the posts) that had (a) a net increase in sediment 

elevation (i.e. sediment deposition), (b) a net decrease in sediment elevation (i.e. surface erosion) or 

(c) no change in sediment elevation (i.e. remained stable), in function of plant density (low, medium, 

high) and wave exposure (sheltered, moderate and exposed). Bars represent the means and error bars 

are the standard errors (total n = 45). 
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Sediment grain size analyses revealed that the sediment at all three sites was predominantly sandy, 

but that the sheltered site differed from the exposed and moderate sites by having a higher proportion 

of clay-silt particles in the sediment. 

Table S1. Percentage of each sediment class at the sheltered, moderate and exposed sites in Red 

Wharf Bay.

Sediment type and size (um) Sheltered Moderate Exposed

Silt-clay (0.02-63) 30 4 2
Fine sand (63-256) 68 82 78
Medium-coarse sand (256-2000) 2 14 20
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Table S2. Output of the linear mixed effects model performed on the response variable ‘net change in 

sediment elevation’ across the cross-plot profiles. R2 (marginal) = 0.51 (only fixed effects considered), 

R2 (conditional) = 0.95 (taking the random effects into account).

Effect Df Chi squared-statistic p-Value

Wave forcing 2 17.068 <0.001***
Vegetation density 2 24.808 <0.001***
Position across cross-plot profile 4 182.205 <0.001***
Forcing*Density 4 11.446 0.022*
Forcing*Position across profile 8 73.713 <0.001***
Density*Position across profile 8 28.627 <0.001***
Forcing *Density*Position across profile 16 57.491 <0.001***
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Table S3. Outputs of the linear models and Tukey HSD post-hoc tests for effects of wave forcing and 

plant density on the mean percentage of plot areas (i.e. within the posts) that had a net increase in 

sediment elevation (i.e. sediment deposition), a net decrease in sediment elevation (i.e. surface 

erosion) and that had no change in sediment elevation (i.e. remained stable). In addition, the outputs 

for the mean percentage of plant survival (i.e. of the originally planted area) and patch lateral 

expansion (i.e. area cover of plants outside the planted areas) in experimental plots.  

Response Effect Df F-statistic p-Value

Deposition Wave forcing 2 11.56 <0.001

R2 = 0.72
Vegetation density 2 7.56 <0.01

Forcing*Density 4 3.36 <0.05

Erosion Wave forcing 2 7.65 <0.01

R2 = 0.73
Vegetation density 2 7.44 <0.01

Forcing*Density 4 5.51 <0.01

Stable Wave forcing 2 12.37 <0.001

R2 = 0.82
Vegetation density 2 18.42 <0.001

Forcing*Density 4 6.51 <0.01

% survival Wave forcing 2 3.62 <0.05

R2 = 0.45
Vegetation density 2 4.40 <0.05

Forcing*Density 4 2.86 <0.05

% expansion Wave forcing 2 38.12 <0.001

R2 = 0.77
Vegetation density 2 53.88 <0.001

Forcing*Density 4 29.16 <0.001
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modelForSedimentChange <- 
lme(sediment ~ energy*density*distance, 
              random = ~1 + distance|plot,
              method = "REML",
              data = rwb_data)

TUKEY HSD FOR NET SEDIMENT CHANGE

$`simple contrasts for energy`
density = Low, distance = A1:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed    23.167  7.90 25  2.933  0.0187 *
Sheltered - Moderate   12.700  6.94 25  1.831  0.1803
Exposed - Moderate    -10.467  7.55 25 -1.386  0.3632

density = High, distance = A1:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed    48.333  7.90 25  6.120  <.0001 ***
Sheltered - Moderate   24.600  6.94 25  3.546  0.0043 **
Exposed - Moderate    -23.733  7.55 25 -3.143  0.0115 *

density = Med, distance = A1:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed    15.000  9.44 25  1.589  0.2688
Sheltered - Moderate   19.800  7.55 25  2.622  0.0377 *
Exposed - Moderate      4.800  8.65 25  0.555  0.8450

density = Low, distance = A2:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed    15.417  5.96 25  2.586  0.0408 *
Sheltered - Moderate    4.750  5.24 25  0.907  0.6409
Exposed - Moderate    -10.667  5.70 25 -1.871  0.1680

density = High, distance = A2:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed    30.833  5.96 25  5.172  0.0001 ***
Sheltered - Moderate   25.700  5.24 25  4.908  0.0001 ***
Exposed - Moderate     -5.133  5.70 25 -0.900  0.6450

density = Med, distance = A2:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed     4.333  7.13 25  0.608  0.8170
Sheltered - Moderate    0.533  5.70 25  0.094  0.9952
Exposed - Moderate     -3.800  6.53 25 -0.582  0.8310

density = Low, distance = B:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed    -4.250  6.60 25 -0.644  0.7976
Sheltered - Moderate   14.550  5.80 25  2.509  0.0481 *
Exposed - Moderate     18.800  6.31 25  2.978  0.0169 *

density = High, distance = B:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed   -18.167  6.60 25 -2.751  0.0283 *
Sheltered - Moderate  -12.900  5.80 25 -2.224  0.0865 .
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Exposed - Moderate      5.267  6.31 25  0.834  0.6857

density = Med, distance = B:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed     2.833  7.89 25  0.359  0.9316
Sheltered - Moderate   -8.867  6.31 25 -1.404  0.3539
Exposed - Moderate    -11.700  7.23 25 -1.618  0.2570

density = Low, distance = C1:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed    -3.667  7.01 25 -0.523  0.8607
Sheltered - Moderate   -2.400  6.15 25 -0.390  0.9198
Exposed - Moderate      1.267  6.70 25  0.189  0.9805

density = High, distance = C1:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed   -10.500  7.01 25 -1.499  0.3085
Sheltered - Moderate  -10.700  6.15 25 -1.739  0.2109
Exposed - Moderate     -0.200  6.70 25 -0.030  0.9995

density = Med, distance = C1:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed    -6.333  8.37 25 -0.756  0.7326
Sheltered - Moderate  -15.133  6.70 25 -2.259  0.0807 .
Exposed - Moderate     -8.800  7.67 25 -1.147  0.4952

density = Low, distance = C2:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed     8.583  9.45 25  0.908  0.6403
Sheltered - Moderate    5.850  8.30 25  0.705  0.7630
Exposed - Moderate     -2.733  9.04 25 -0.302  0.9509

density = High, distance = C2:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed    26.667  9.45 25  2.821  0.0242 *
Sheltered - Moderate   -6.400  8.30 25 -0.771  0.7239
Exposed - Moderate    -33.067  9.04 25 -3.659  0.0033 **

density = Med, distance = C2:
  contrast             estimate    SE df t.ratio p.value
Sheltered - Exposed    -2.333 11.30 25 -0.207  0.9768
Sheltered - Moderate    3.067  9.04 25  0.339  0.9387
Exposed - Moderate      5.400 10.35 25  0.522  0.8616

P value adjustment: tukey method for comparing a family of 3 
estimates

$`simple contrasts for density`
energy = Sheltered, distance = A1:
  contrast   estimate    SE df t.ratio p.value
Low - High    0.500  7.31 25  0.068  0.9974
Low - Med    -1.500  7.90 25 -0.190  0.9803
High - Med   -2.000  7.90 25 -0.253  0.9653

energy = Exposed, distance = A1:
  contrast   estimate    SE df t.ratio p.value
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Low - High   25.667  8.44 25  3.040  0.0146 *
Low - Med    -9.667  9.44 25 -1.024  0.5689
High - Med  -35.333  9.44 25 -3.743  0.0027 **

energy = Moderate, distance = A1:
  contrast   estimate    SE df t.ratio p.value
Low - High   12.400  6.54 25  1.896  0.1607
Low - Med     5.600  6.54 25  0.856  0.6722
High - Med   -6.800  6.54 25 -1.040  0.5594

energy = Sheltered, distance = A2:
  contrast   estimate    SE df t.ratio p.value
Low - High   -0.750  5.52 25 -0.136  0.9899
Low - Med     4.417  5.96 25  0.741  0.7418
High - Med    5.167  5.96 25  0.867  0.6659

energy = Exposed, distance = A2:
  contrast   estimate    SE df t.ratio p.value
Low - High   14.667  6.37 25  2.301  0.0741 .
Low - Med    -6.667  7.13 25 -0.936  0.6234
High - Med  -21.333  7.13 25 -2.994  0.0163 *

energy = Moderate, distance = A2:
  contrast   estimate    SE df t.ratio p.value
Low - High   20.200  4.94 25  4.092  0.0011 **
Low - Med     0.200  4.94 25  0.041  0.9991
High - Med  -20.000  4.94 25 -4.051  0.0012 **

energy = Sheltered, distance = B:
  contrast   estimate    SE df t.ratio p.value
Low - High    8.250  6.11 25  1.350  0.3820
Low - Med     0.417  6.60 25  0.063  0.9978
High - Med   -7.833  6.60 25 -1.186  0.4720

energy = Exposed, distance = B:
  contrast   estimate    SE df t.ratio p.value
Low - High   -5.667  7.06 25 -0.803  0.7048
Low - Med     7.500  7.89 25  0.950  0.6143
High - Med   13.167  7.89 25  1.668  0.2369

energy = Moderate, distance = B:
  contrast   estimate    SE df t.ratio p.value
Low - High  -19.200  5.47 25 -3.512  0.0047 **
Low - Med   -23.000  5.47 25 -4.207  0.0008 ***
High - Med   -3.800  5.47 25 -0.695  0.7686

energy = Sheltered, distance = C1:
  contrast   estimate    SE df t.ratio p.value
Low - High    2.500  6.49 25  0.385  0.9216
Low - Med    -4.667  7.01 25 -0.666  0.7850
High - Med   -7.167  7.01 25 -1.023  0.5696

energy = Exposed, distance = C1:
  contrast   estimate    SE df t.ratio p.value
Low - High   -4.333  7.49 25 -0.579  0.8327
Low - Med    -7.333  8.37 25 -0.876  0.6602
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High - Med   -3.000  8.37 25 -0.358  0.9319

energy = Moderate, distance = C1:
  contrast   estimate    SE df t.ratio p.value
Low - High   -5.800  5.80 25 -1.000  0.5838
Low - Med   -17.400  5.80 25 -3.000  0.0161 *
High - Med  -11.600  5.80 25 -2.000  0.1331

energy = Sheltered, distance = C2:
  contrast   estimate    SE df t.ratio p.value
Low - High    2.250  8.75 25  0.257  0.9643
Low - Med    -3.417  9.45 25 -0.362  0.9307
High - Med   -5.667  9.45 25 -0.600  0.8216

energy = Exposed, distance = C2:
  contrast   estimate    SE df t.ratio p.value
Low - High   20.333 10.10 25  2.012  0.1300
Low - Med   -14.333 11.30 25 -1.269  0.4254
High - Med  -34.667 11.30 25 -3.069  0.0137 *

energy = Moderate, distance = C2:
  contrast   estimate    SE df t.ratio p.value
Low - High  -10.000  7.83 25 -1.278  0.4205
Low - Med    -6.200  7.83 25 -0.792  0.7112
High - Med    3.800  7.83 25  0.486  0.8788

P value adjustment: tukey method for comparing a family of 3 
estimates

$`simple contrasts for distance`
energy = Sheltered, density = Low:
  contrast estimate    SE  df t.ratio p.value
A1 - A2      5.75  6.38 100  0.901  0.8957
A1 - B       4.75  8.03 100  0.591  0.9761
A1 - C1      5.50  7.03 100  0.782  0.9351
A1 - C2     -1.75  8.10 100 -0.216  0.9995
A2 - B      -1.00  4.83 100 -0.207  0.9996
A2 - C1     -0.25  6.11 100 -0.041  1.0000
A2 - C2     -7.50  6.09 100 -1.231  0.7335
B - C1       0.75  5.12 100  0.147  0.9999
B - C2      -6.50  7.28 100 -0.892  0.8991
C1 - C2     -7.25  9.58 100 -0.757  0.9423

energy = Exposed, density = Low:
  contrast estimate    SE  df t.ratio p.value
A1 - A2     -2.00  7.37 100 -0.272  0.9988
A1 - B     -22.67  9.28 100 -2.444  0.1123
A1 - C1    -21.33  8.12 100 -2.628  0.0729
A1 - C2    -16.33  9.35 100 -1.746  0.4109
A2 - B     -20.67  5.58 100 -3.703  0.0032 **
A2 - C1    -19.33  7.06 100 -2.740  0.0551 .
A2 - C2    -14.33  7.04 100 -2.037  0.2562
B - C1       1.33  5.91 100  0.226  0.9994
B - C2       6.33  8.41 100  0.753  0.9432
C1 - C2      5.00 11.07 100  0.452  0.9913
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energy = Moderate, density = Low:
  contrast estimate    SE  df t.ratio p.value
A1 - A2     -2.20  5.71 100 -0.386  0.9952
A1 - B       6.60  7.18 100  0.919  0.8891
A1 - C1     -9.60  6.29 100 -1.527  0.5476
A1 - C2     -8.60  7.25 100 -1.187  0.7589
A2 - B       8.80  4.32 100  2.035  0.2569
A2 - C1     -7.40  5.46 100 -1.354  0.6582
A2 - C2     -6.40  5.45 100 -1.174  0.7660
B - C1     -16.20  4.58 100 -3.538  0.0054 **
B - C2     -15.20  6.52 100 -2.333  0.1432
C1 - C2      1.00  8.57 100  0.117  1.0000

energy = Sheltered, density = High:
  contrast estimate    SE  df t.ratio p.value
A1 - A2      4.50  6.38 100  0.705  0.9548
A1 - B      12.50  8.03 100  1.556  0.5289
A1 - C1      7.50  7.03 100  1.067  0.8230
A1 - C2      0.00  8.10 100  0.000  1.0000
A2 - B       8.00  4.83 100  1.655  0.4663
A2 - C1      3.00  6.11 100  0.491  0.9880
A2 - C2     -4.50  6.09 100 -0.738  0.9469
B - C1      -5.00  5.12 100 -0.977  0.8651
B - C2     -12.50  7.28 100 -1.716  0.4290
C1 - C2     -7.50  9.58 100 -0.783  0.9351

energy = Exposed, density = High:
  contrast estimate    SE  df t.ratio p.value
A1 - A2    -13.00  7.37 100 -1.765  0.3998
A1 - B     -54.00  9.28 100 -5.822  <.0001 ***
A1 - C1    -51.33  8.12 100 -6.324  <.0001 ***
A1 - C2    -21.67  9.35 100 -2.316  0.1484
A2 - B     -41.00  5.58 100 -7.346  <.0001 ***
A2 - C1    -38.33  7.06 100 -5.433  <.0001 ***
A2 - C2     -8.67  7.04 100 -1.232  0.7329
B - C1       2.67  5.91 100  0.451  0.9913
B - C2      32.33  8.41 100  3.844  0.0020 **
C1 - C2     29.67 11.07 100  2.681  0.0640 .

energy = Moderate, density = High:
  contrast estimate    SE  df t.ratio p.value
A1 - A2      5.60  5.71 100  0.981  0.8630
A1 - B     -25.00  7.18 100 -3.480  0.0066 **
A1 - C1    -27.80  6.29 100 -4.422  0.0002 ***
A1 - C2    -31.00  7.25 100 -4.278  0.0004 ***
A2 - B     -30.60  4.32 100 -7.078  <.0001 ***
A2 - C1    -33.40  5.46 100 -6.112  <.0001 ***
A2 - C2    -36.60  5.45 100 -6.715  <.0001 ***
B - C1      -2.80  4.58 100 -0.612  0.9730
B - C2      -6.00  6.52 100 -0.921  0.8882
C1 - C2     -3.20  8.57 100 -0.373  0.9958

energy = Sheltered, density = Med:
  contrast estimate    SE  df t.ratio p.value
A1 - A2     11.67  7.37 100  1.584  0.5112
A1 - B       6.67  9.28 100  0.719  0.9517
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A1 - C1      2.33  8.12 100  0.287  0.9985
A1 - C2     -3.67  9.35 100 -0.392  0.9949
A2 - B      -5.00  5.58 100 -0.896  0.8978
A2 - C1     -9.33  7.06 100 -1.323  0.6777
A2 - C2    -15.33  7.04 100 -2.179  0.1961
B - C1      -4.33  5.91 100 -0.733  0.9483
B - C2     -10.33  8.41 100 -1.228  0.7348
C1 - C2     -6.00 11.07 100 -0.542  0.9827

energy = Exposed, density = Med:
  contrast estimate    SE  df t.ratio p.value
A1 - A2      1.00  9.02 100  0.111  1.0000
A1 - B      -5.50 11.36 100 -0.484  0.9887
A1 - C1    -19.00  9.94 100 -1.911  0.3182
A1 - C2    -21.00 11.46 100 -1.833  0.3607
A2 - B      -6.50  6.84 100 -0.951  0.8761
A2 - C1    -20.00  8.64 100 -2.315  0.1489
A2 - C2    -22.00  8.62 100 -2.553  0.0873 .
B - C1     -13.50  7.24 100 -1.865  0.3430
B - C2     -15.50 10.30 100 -1.505  0.5620
C1 - C2     -2.00 13.55 100 -0.148  0.9999

energy = Moderate, density = Med:
  contrast estimate    SE  df t.ratio p.value
A1 - A2     -7.60  5.71 100 -1.332  0.6720
A1 - B     -22.00  7.18 100 -3.062  0.0231 *
A1 - C1    -32.60  6.29 100 -5.185  <.0001 ***
A1 - C2    -20.40  7.25 100 -2.815  0.0454 *
A2 - B     -14.40  4.32 100 -3.331  0.0104 *
A2 - C1    -25.00  5.46 100 -4.575  0.0001 ***
A2 - C2    -12.80  5.45 100 -2.349  0.1385
B - C1     -10.60  4.58 100 -2.315  0.1486
B - C2       1.60  6.52 100  0.246  0.9992
C1 - C2     12.20  8.57 100  1.423  0.6142

P value adjustment: tukey method for comparing a family of 5 
estimates
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ModelSurvival <- lm(survival ~ energy*density,
              data = surv)

TUKEY HSD FOR PLANT SURVIVAL

`simple contrasts for energy`
density = Low:
  contrast             estimate   SE df t.ratio p.value
Sheltered - Exposed      4.00 12.2 33  0.328  0.9426
Sheltered - Moderate    24.00 12.2 33  1.966  0.1367
Exposed - Moderate      20.00 11.5 33  1.738  0.2066

density = High:
  contrast             estimate   SE df t.ratio p.value
Sheltered - Exposed    -23.95 12.2 33 -1.962  0.1377
Sheltered - Moderate     1.59 12.2 33  0.130  0.9907
Exposed - Moderate      25.54 11.5 33  2.219  0.0827 .

density = Medium:
  contrast             estimate   SE df t.ratio p.value
Sheltered - Exposed     32.50 12.2 33  2.662  0.0311 *
Sheltered - Moderate    27.50 12.2 33  2.253  0.0771 .
Exposed - Moderate      -5.00 11.5 33 -0.434  0.9015

P value adjustment: tukey method for comparing a family of 3 
estimates

$`simple contrasts for density`
energy = Sheltered:
  contrast      estimate   SE df t.ratio p.value
Low - High        7.75 12.9 33  0.602  0.8199
Low - Medium     -1.25 12.9 33 -0.097  0.9948
High - Medium    -9.00 12.9 33 -0.699  0.7655

energy = Exposed:
  contrast      estimate   SE df t.ratio p.value
Low - High      -20.20 11.5 33 -1.755  0.2005
Low - Medium     27.25 11.5 33  2.367  0.0604 .
High - Medium    47.45 11.5 33  4.122  0.0007 *

energy = Moderate:
  contrast      estimate   SE df t.ratio p.value
Low - High      -14.66 11.5 33 -1.274  0.4197
Low - Medium      2.25 11.5 33  0.195  0.9792
High - Medium    16.91 11.5 33  1.469  0.3185

P value adjustment: tukey method for comparing a family of 3 
estimates
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modelExpansion <- gls(growth ~ energy*density, 
              weights = varIdent(form = ~1|energy*density),
              method = "REML",
              data = expansion)

TUKEY HSD FOR PLANT EXPANSION

`simple contrasts for energy`
density = Low:
 contrast             estimate    SE   df t.ratio p.value
 Sheltered - Exposed     15.60 33.31 3.59  0.468  0.8896 
 Sheltered - Moderate    87.30 31.88 3.20  2.738  0.1309 
 Exposed - Moderate      71.70 12.57 1.21  5.705     NaN 

density = High:
 contrast             estimate    SE   df t.ratio p.value
 Sheltered - Exposed    -32.38 10.51 5.95 -3.081  0.0496 
 Sheltered - Moderate     1.51  9.09 4.14  0.167  0.9849 
 Exposed - Moderate      33.90  8.37 7.30  4.051  0.0109 * 

density = Medium:
 contrast             estimate    SE   df t.ratio p.value
 Sheltered - Exposed    273.20 79.52 2.02  3.435  0.1321 
 Sheltered - Moderate   282.43 81.32 2.21  3.473  0.1168 
 Exposed - Moderate       9.22 19.20 3.61  0.480  0.8844 

P value adjustment: tukey method for comparing a family of 3 
estimates 

$`simple contrasts for density`
energy = Sheltered:
 contrast      estimate    SE   df t.ratio p.value
 Low - High       46.62 32.34 3.37  1.442  0.4182 
 Low - Medium   -202.50 85.26 2.63 -2.375  0.2038 
 High - Medium  -249.12 79.66 2.04 -3.127  0.1542 

energy = Exposed:
 contrast      estimate    SE   df t.ratio p.value
 Low - High       -1.36 13.21 1.39 -0.103     NaN 
 Low - Medium     55.10 12.85 1.24  4.288     NaN 
 High - Medium    56.46  9.41 3.70  5.997  0.0107 * 

energy = Moderate:
 contrast      estimate    SE   df t.ratio p.value
 Low - High      -39.16  7.32 4.49 -5.349  0.0095 ** 
 Low - Medium     -7.38 19.01 3.57 -0.388  0.9222 
 High - Medium    31.79 18.71 3.39  1.699  0.3270 

P value adjustment: tukey method for comparing a family of 3 
estimates
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