66 research outputs found

    Do open star clusters evolve toward energy equipartition?

    Get PDF
    We investigate whether open clusters (OCs) tend to energy equipartition, by means of direct N-body simulations with a broken power-law mass function. We find that the simulated OCs become strongly mass segregated, but the local velocity dispersion does not depend on the stellar mass for most of the mass range: the curve of the velocity dispersion as a function of mass is nearly flat even after several half-mass relaxation times, regardless of the adopted stellar evolution recipes and Galactic tidal field model. This result holds both if we start from virialized King models and if we use clumpy sub-virial initial conditions. The velocity dispersion of the most massive stars and stellar remnants tends to be higher than the velocity dispersion of the lighter stars. This trend is particularly evident in simulations without stellar evolution. We interpret this result as a consequence of the strong mass segregation, which leads to Spitzer's instability. Stellar winds delay the onset of the instability. Our simulations strongly support the result that OCs do not attain equipartition, for a wide range of initial conditions

    X-ray Emission From Nearby M-dwarfs: the Super-saturation Phenomenon

    Get PDF
    A rotation rate and X-ray luminosity analysis is presented for rapidly rotating single and binary M-dwarf systems. X-ray luminosities for the majority of both single & binary M-dwarf systems with periods below ≃5−6\simeq 5-6 days (equatorial velocities, Veq>_{eq}> 6 km~s−1^{-1}) are consistent with the current rotation-activity paradigm, and appear to saturate at about 10−310^{-3} of the stellar bolometric luminosity. The single M-dwarf data show tentative evidence for the super-saturation phenomenon observed in some ultra-fast rotating (>> 100 km~s−1^{-1}) G & K-dwarfs in the IC 2391, IC 2602 and Alpha Persei clusters. The IC 2391 M star VXR60b is the least X-ray active and most rapidly rotating of the short period (Prot<_{rot}< 2 days) stars considered herein, with a period of 0.212 days and an X-ray activity level about 1.5 sigma below the mean X-ray emission level for most of the single M-dwarf sample. For this star, and possibly one other, we cautiously believe that we have identified the first evidence of super-saturation in M-dwarfs. If we are wrong, we demonstrate that only M-dwarfs rotating close to their break up velocities are likely to exhibit the super-saturation effect at X-ray wavelengths.Comment: 12 pages, 4 figures, accepted by MNRA

    Lithium in Blanco1: Implications for Stellar Mixing

    Full text link
    We obtain lithium abundances for G and K stars in Blanco 1, an open cluster with an age similar to, or slightly younger than, the Pleiades. We critically examine previous spectroscopic abundance analyses of Blanco 1 and conclude that while there were flaws in earlier work, it is likely that Blanco 1 is close in overall metallicity to the older Hyades cluster and more metal-rich than the Pleiades. However, we find Blanco 1 has Li abundances and rotation rates similar to the Pleiades, contradicting predictions from standard stellar evolution models, in which convective pre-main sequence (PMS) Li depletion should increase rapidly with metallicity. If the high metallicity of Blanco 1 is subsequently confirmed, our observations imply (1) that a currently unknown mechanism severely inhibits PMS Li depletion, (2) that additional non-standard mixing modes, such as those driven by rotation and angular momentum loss, are then responsible for main sequence Li depletion between the ages of Blanco 1 and the Hyades, and (3) that in clusters younger than the Hyades, metallicity plays only a minor role in determining the amount of Li depletion among G and K stars. These conclusions suggest that Li abundance remains a useful age indicator among young (less than 700 Myr) stars even when metallicities are unknown. If non-standard mixing is effective in Population I stars, the primordial Li abundance could be significantly larger than present day Population II Li abundances, due to prior Li depletion.Comment: 18 pages, 3 figs. To appear in ApJ Vol. 511 (Jan 20 1999

    A revised age greater than 50 Myr for the young cluster IC 4665

    Get PDF
    IC 4665 is one of only a dozen young open clusters with a “lithium depletion boundary” (LDB) age. Using an astrometrically and spectroscopically filtered sample of cluster members, we show that both the positions of its low mass stars in Gaia absolute colour-magnitude diagrams and the lithium depletion seen among its K- and early M-stars are discordant with the reported LDB age of 32−5+432^{+4}_{-5} Myr. Re-analysis of archival spectra suggests that the LDB of IC 4665 has not been detected and that the published LDB age should be interpreted as a lower limit. Empirical comparisons with similar datasets from other young clusters with better-established LDB ages indicate that IC 4665 is bracketed in age by the clusters IC 2602 and IC 2391 at 55 ± 3 Myr

    Mapping the distribution of OB stars and associations in Auriga

    Get PDF
    OB associations are important probes of recent star formation and Galactic structure. In this study, we focus on the Auriga constellation, an important region of star formation due to its numerous young stars, star-forming regions, and open clusters. We show using Gaia data that its two previously documented OB associations, Aur OB1 and OB2, are too extended in proper motion and distance to be genuine associations, encouraging us to revisit the census of OB associations in Auriga with modern techniques. We identify 5617 candidate OB stars across the region using photometry, astrometry and our SED fitting code, grouping these into five high-confidence OB associations using HDBSCAN. Three of these are replacements to the historical pair of associations - Aur OB2 is divided between a foreground and a background association - while the other two associations are completely new. We connect these OB associations to the surrounding open clusters and star-forming regions, analyse them physically and kinematically, constraining their ages through a combination of 3D kinematic traceback, the position of their members in the HR diagram and their connection to clusters of known age. Four of these OB associations are expanding, with kinematic ages up to a few tens of Myr. Finally, we identify an age gradient in the region spanning several associations that coincides with the motion of the Perseus spiral arm over the last similar to 20 Myr across the field of view

    X-ray emission from nearby M-dwarfs: the super-saturation phenomenon

    Get PDF
    A rotation rate and X-ray luminosity analysis is presented for rapidly rotating single and binary M-dwarf systems. X-ray luminosities for the majority of both single and binary M-dwarf systems with periods below ≃5-6 d (equatorial velocities, Veq≳6 km s−1) are consistent with the current rotation-activity paradigm, and appear to saturate at about 10−3 of the stellar bolometric luminosity. The single M-dwarf data show tentative evidence for the super-saturation phenomenon observed in some ultra-fast rotating (≳100 km s−1) G- and K-dwarfs in the IC 2391, IC 2602 and Alpha Persei clusters. The IC 2391 M star VXR60b is the least X-ray active and most rapidly rotating of the short period (Protâ‰Č2 d) stars considered herein, with a period of 0.212 d and an X-ray activity level of about 1.5 sigma below the mean X-ray emission level for most of the single M-dwarf sample. For this star, and possibly one other, we cautiously believe that we have identified the first evidence of super-saturation in M-dwarfs. If we are wrong, we demonstrate that only M-dwarfs rotating close to their break-up velocities are likely to exhibit the super-saturation effect at X-ray wavelengths. The M-dwarf X-ray data also show that there is no evidence for any difference in the X-ray behaviour between the single and binary systems, because for the single stars, the mean log LxLbol=−3.21±0.04 (0.2â‰ČProtâ‰Č10.1 d), whereas for the binary stars, the mean log LxLbol=−3.19±0.10 (0.8â‰ČProtâ‰Č10.4 d). Furthermore, we show that extremely X-ray active M-dwarfs exhibit a blue excess of about 0.1 magnitudes in U-B compared with less active field M-dwarfs. Such an excess level is comparable to that observed for extremely chromospherically active M-dwarfs. Moreover, as is the case for M-dwarf Ca ii H and K activity levels, there is an exclusion zone of X-ray activity between the extremely active M-dwarfs and the less active one

    Rotation and activity in the solar-metallicity open cluster NGC2516

    Full text link
    We report new measures of radial velocities and rotation rates (v sin i) for 51 F and early-G stars in the open cluster NGC2516, and combine these with previously published data. From high signal-to-noise spectra of two stars, we show that NGC2516 has a relative iron abundance with respect to the Pleiades of delta([Fe/H])= +0.04 +/- 0.07 at the canonical reddening of E(B - V) = 0.12, in contrast to previous photometric studies that placed the cluster 0.2 to 0.4 dex below solar. We construct a color-magnitude diagram based on radial velocity members, and explore the sensitivity of photometric determinations of the metallicity and distance to assumed values of the reddening. For a metal abundance near solar, the Hipparcos distance to NGC2516 is probably underestimated. Finally, we show that the distribution of rotation rates and X-ray emission does not differ greatly from that of the Pleiades, when allowance is made for the somewhat older age of NGC2516.Comment: Accepted for publication in the Astrophysical Journal. 35 pages including 7 figure

    The Gaia-ESO Survey::Properties of the intermediate age open cluster NGC 4815

    Get PDF
    Context. NGC 4815 is a populous similar to 500 Myr open cluster at R-gc similar to 7 kpc observed in the first six months of the Gaia-ESO Survey. Located in the inner Galactic disk, NGC 4815 is an important potential tracer of the abundance gradient, where relatively few intermediate age open clusters are found. Aims. The Gaia-ESO Survey data can provide an improved characterization of the cluster properties, such as age, distance, reddening, and abundance profile. Methods. We use the survey derived radial velocities, stellar atmospheric parameters, metallicity, and elemental abundances for stars targeted as potential members of this cluster to carry out an analysis of cluster properties. The radial velocity distribution of stars in the cluster field is used to define the cluster systemic velocity and derive likely cluster membership for stars observed by the Gaia-ESO Survey. We investigate the distributions of Fe and Fe-peak elements, alpha-elements, and the light elements Na and Al and characterize the cluster's internal chemical homogeneity comparing it to the properties of radial velocity non-member stars. Utilizing these cluster properties, the cluster color-magnitude diagram is analyzed and theoretical isochrones are fit to derive cluster reddening, distance, and age. Results. NGC 4815 is found to have a mean metallicity of [Fe/H] = +0.03 +/- 0.05 dex (s.d.). Elemental abundances of cluster members show typically very small internal variation, with internal dispersions of similar to 0.05 dex. The alpha-elements [Ca/Fe] and [Si/Fe] show solar ratios, but [Mg/Fe] is moderately enhanced, while [Ti/Fe] appears slightly deficient. As with many open clusters, the light elements [Na/Fe] and [Al/Fe] are enhanced, [Na/Fe] significantly so, although the role of internal mixing and the assumption of local thermodynamical equilibrium in the analysis remain to be investigated. From isochrone fits to color-magnitude diagrams, we find a cluster age of 0.5 to 0.63 Gyr, a reddening of E(B-V) = 0.59 to 0.65, and a distance modulus (m -M)(0) = 11.95 to 12.20, depending on the choice of theoretical models, leading to a Galactocentric distance of 6.9 kpc

    A deep multi-band investigation of IC2391

    Full text link
    We report the outcome of a deep multi-wavelength study of the IC2391 young open cluster. We aim at uncovering new low-mass and sub-stellar members of the cluster and identifying new debris disk objects. A 30*30 square arcmin area in IC 2391 was observed using the wide-field imager at the ESO 2.2m telescope. The completeness limits of the photometry at 3 sigma level are V=24.7, Rc=23.7 and Ic=23.0, faint enough to reveal sub-stellar members down to about 0.03 solar masses. Our membership criteria are based on the use of our optical data, in combination with JHKs magnitudes from the 2MASS catalog. We also estimate the physical parameters of the selected candidates. Debris disk candidates are identified on the basis of their infrared excess emission using near- and mid-infrared photometry from the Spitzer Space Telescope. Our optical survey, which has a limiting magnitude at 3 sigma level 1-2 mag fainter than previous optical surveys conducted in IC2391, revealed 29 new low-mass member candidates of the cluster. We estimate the contamination to be at least 50%. We constrain the fraction of sub-stellar objects in the range 8-15% and discuss possible explanations for the deficit of brown dwarfs in this cluster. We also identified 10 candidates in the cluster showing IR excess emission consistent with the presence of debris disks.Comment: 17 pages, 9 figure
    • 

    corecore