67 research outputs found

    Subjective probability and quantum certainty

    Get PDF
    In the Bayesian approach to quantum mechanics, probabilities--and thus quantum states--represent an agent's degrees of belief, rather than corresponding to objective properties of physical systems. In this paper we investigate the concept of certainty in quantum mechanics. Particularly, we show how the probability-1 predictions derived from pure quantum states highlight a fundamental difference between our Bayesian approach, on the one hand, and Copenhagen and similar interpretations on the other. We first review the main arguments for the general claim that probabilities always represent degrees of belief. We then argue that a quantum state prepared by some physical device always depends on an agent's prior beliefs, implying that the probability-1 predictions derived from that state also depend on the agent's prior beliefs. Quantum certainty is therefore always some agent's certainty. Conversely, if facts about an experimental setup could imply agent-independent certainty for a measurement outcome, as in many Copenhagen-like interpretations, that outcome would effectively correspond to a preexisting system property. The idea that measurement outcomes occurring with certainty correspond to preexisting system properties is, however, in conflict with locality. We emphasize this by giving a version of an argument of Stairs [A. Stairs, Phil. Sci. 50, 578 (1983)], which applies the Kochen-Specker theorem to an entangled bipartite system.Comment: 20 pages RevTeX, 1 figure, extensive changes in response to referees' comment

    Unknown Quantum States: The Quantum de Finetti Representation

    Full text link
    We present an elementary proof of the quantum de Finetti representation theorem, a quantum analogue of de Finetti's classical theorem on exchangeable probability assignments. This contrasts with the original proof of Hudson and Moody [Z. Wahrschein. verw. Geb. 33, 343 (1976)], which relies on advanced mathematics and does not share the same potential for generalization. The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. The quantum de Finetti theorem, in a closely analogous fashion, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an ``unknown quantum state'' in quantum-state tomography. This result is especially important for information-based interpretations of quantum mechanics, where quantum states, like probabilities, are taken to be states of knowledge rather than states of nature. We further demonstrate that the theorem fails for real Hilbert spaces and discuss the significance of this point.Comment: 30 pages, 2 figure

    Bayesian Conditioning, the Reflection Principle, and Quantum Decoherence

    Get PDF
    The probabilities a Bayesian agent assigns to a set of events typically change with time, for instance when the agent updates them in the light of new data. In this paper we address the question of how an agent's probabilities at different times are constrained by Dutch-book coherence. We review and attempt to clarify the argument that, although an agent is not forced by coherence to use the usual Bayesian conditioning rule to update his probabilities, coherence does require the agent's probabilities to satisfy van Fraassen's [1984] reflection principle (which entails a related constraint pointed out by Goldstein [1983]). We then exhibit the specialized assumption needed to recover Bayesian conditioning from an analogous reflection-style consideration. Bringing the argument to the context of quantum measurement theory, we show that "quantum decoherence" can be understood in purely personalist terms---quantum decoherence (as supposed in a von Neumann chain) is not a physical process at all, but an application of the reflection principle. From this point of view, the decoherence theory of Zeh, Zurek, and others as a story of quantum measurement has the plot turned exactly backward.Comment: 14 pages, written in memory of Itamar Pitowsk

    Facts, Values and Quanta

    Full text link
    Quantum mechanics is a fundamentally probabilistic theory (at least so far as the empirical predictions are concerned). It follows that, if one wants to properly understand quantum mechanics, it is essential to clearly understand the meaning of probability statements. The interpretation of probability has excited nearly as much philosophical controversy as the interpretation of quantum mechanics. 20th century physicists have mostly adopted a frequentist conception. In this paper it is argued that we ought, instead, to adopt a logical or Bayesian conception. The paper includes a comparison of the orthodox and Bayesian theories of statistical inference. It concludes with a few remarks concerning the implications for the concept of physical reality.Comment: 30 pages, AMS Late

    Electromagnetic channel capacity for practical purposes

    Get PDF
    We give analytic upper bounds to the channel capacity C for transmission of classical information in electromagnetic channels (bosonic channels with thermal noise). In the practically relevant regimes of high noise and low transmissivity, by comparison with know lower bounds on C, our inequalities determine the value of the capacity up to corrections which are irrelevant for all practical purposes. Examples of such channels are radio communication, infrared or visible-wavelength free space channels. We also provide bounds to active channels that include amplification.Comment: 6 pages, 3 figures. NB: the capacity bounds are constructed by generalizing to the multi-mode case the minimum-output entropy bounds of arXiv:quant-ph/0404005 [Phys. Rev. A 70, 032315 (2004)
    • 

    corecore