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Electromagnetic channel capacity for practical purposes
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We give analytic upper bounds to the channel capacity C for transmission of classical informa-
tion in electromagnetic channels (bosonic channels with thermal noise). In the practically relevant
regimes of high noise and low transmissivity, by comparison with know lower bounds on C, our in-
equalities determine the value of the capacity up to corrections which are irrelevant for all practical
purposes. Examples of such channels are radio communication, infrared or visible-wavelength free
space channels. We also provide bounds to active channels that include amplification.

Shannon [1] famously proved that the maximum num-
ber of bits transmitted through a narrowband Gaussian-
noise channel is C = log2(1 + S/N) for each use of the
channel, where S/N is the signal to noise ratio. At bot-
tom, the noise has a quantum origin, and the calcula-
tion of the capacity requires a quantum description of
the channel. Accordingly, one of the oldest questions in
quantum information theory is the calculation of channel
capacities [2, 3].

(a) (b)

FIG. 1: Plots of the bounds for the passive channel with
thermal noise (a) and for the amplifier (b) in the practically
relevant regimes of high thermal noise (large N): the upper
and lower bounds (red and black curves of Figs. 2b and 2c)
are basically coincident here. (a) Plots of the bounds (1), (4)
and of the bound of Koenig and Smith [4] as a function of the
transmissivity η for a microwave radio communication, EN

η ,
with N = 2000 at room temperature, N̄ = 1011 for ∼ 1 mW
transmission power (assuming that one channel use lasts for
one oscillation period of the radiation). In this regime the
lower bound (1) is indistinguishable from our upper bound
(4) (black curve) (see also the magnification in the insert),
whereas the gap with Koenig and Smith’s bound (green curve)
is evident. Typical transmissivities are very low for these
channels (e.g., η = 0.04 for a 14 dB attenuation). (b) Capacity
of the amplifier A

N
κ as a function of the gain κ: here the

lower bound (1) is indistinguishable from the upper bound
(6) (black line), whereas the upper bound (28) (green line) is
not useful. Here again N̄ = 1011 and N = 2000.

Some of the most practically relevant communication
channels are active and passive bosonic channels with
thermal noise, e.g. radio or infrared-light communication.

In this paper we provide upper and lower bounds for their
capacity. In the case of the passive bosonic channel, our
bounds supersede the recent one given by Koenig and
Smith [4]: in particular in contrast to their bound, for
the practically relevant regimes of large thermal noise or
low transmissivities (where each channel use can convey
only small fractions of a bit) our bounds are sufficiently
tight to constitute an expression for the capacity which
is good for practical purposes. These findings are consis-
tent with the Holevo-Werner conjecture [5], that Gaus-
sian mixtures of coherent states achieve capacity and that
these channels are additive. In other words, in situations
of practical interest, quantum effects (such as entangle-
ment among subsequent channel uses) do not give any
advantage and a coding alphabet composed of coherent
states (e.g., the is output from a maser or laser) achieves
capacity. It is important to stress, however, that there
are other regimes in which our inequalities are not tight:
(slight) quantum advantages in low-noise regimes might
be still possible.

We consider two passive channels: the thermal bosonic
channel EN

η that can be modeled by a beam splitter of
transmissivity η that mixes the signal with a thermal
state with mean photon number N (the capacity of this
channel for N = 0 is already known [9]), and the classi-
cal additive noise channel Nn in which the signal is ran-
domly displaced in the complex phase-space according
to a Gaussian probability distribution of variance n. We
also consider phase-insensitive amplifiers AN

κ with gain
κ > 1, whose additional input mode (required to ensure
the correct commutation relations of the fields) is in a
thermal state of mean photon number N . Using a signal
of N̄ average photons, with an alphabet of Gaussian-
distributed coherent states, one find the following lower
bounds for their capacities C:

C(EN
η ) > g(ηN̄ + (1 − η)N)− g((1− η)N) , (1)

C(Nn) > g(N̄ + n)− g(n) , (2)

C(AN
κ ) > g(κN̄ + (κ− 1)(N + 1))− g((κ− 1)(N + 1)),

(3)
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where g(x) := (x + 1) log2(x + 1) − x log2 x. (A proof
of the Holevo-Werner conjecture would turn these into
equalities, but it has been elusive even after a decade
of concerted efforts [5–8].) The main result of our pa-
per is a collection of upper bounds which asymptotically
match the above lower bounds in the practically relevant
regimes of high noise, or low transmissivity, or high am-
plification (see Fig. 1). In particular we show that the
following inequalities apply

C(EN
η ) 6 g(ηN̄ + (1 − η)N)− g((1− η)N − η) , (4)

for η 6
N

N−1 ,

C(Nn) 6 g(N̄ + n)− g(n− 1) for n > 1, (5)

C(AN
κ ) 6 g(κN̄ + (κ− 1)(N + 1))− g(N(κ− 1)− 1) ,

for κ >
N+1
N . (6)

In addition to these simple bounds (which are nonetheless
good enough for many applications) we also derive other,
even tighter, bounds in what follows. All our bounds
apply to narrowband channels, but they can be extended
to broadband channels using the variational techniques
we detailed in [10]. The remainder of the paper is devoted
to the proof of these and of the further bounds.
On Bounds and Conjectures:— To characterize the

channels one can use their action on the state’s char-
acteristic function χ(µ) := Tr[ρ eµa

†−µ∗a] (a being the
annihilation operator of the mode): χ(µ) is transformed
by the channels EN

η , Nn, and AN
κ as (see, e.g., Ref. [6])

χ(µ)
EN
η

−→ χ(ηµ) e−(1−η)(N+1/2)|µ|2 , (7)

χ(µ)
Nn−→ χ(µ) e−n|µ|2 ,

χ(µ)
AN

κ−→ χ(κµ) e−(κ−1)(N+1/2)|µ|2 .

The main difficulty in the calculation of the classi-
cal capacity of a quantum channel Φ is superadditivity
[3]: there exist channels [11] in which the alphabet that
achieves capacity must be composed by entangled quan-
tum states that span multiple channel uses. Accordingly,
one must regularize as follows [3]

C(Φ) = lim
m→∞

Cχ(Φ
⊗m)/m , (8)

where Φ⊗m indicatesm uses of the channel Φ, and [12, 13]

Cχ(Ψ) = max
{pi,ρi}

S
(

∑

i

piΨ[ρi]
)

−
∑

i

piS(Ψ[ρi]) . (9)

Here S(ρ) := −Trρ log2 ρ is the von Neumann entropy,
Ψ[ρi] is the output state from the channel Ψ (that may
represent multiple uses of Φ), and the maximization is
performed over the set of ensembles {pi, ρi} formed by
density matrices ρi and probabilities pi that may satisfy
some resource constraint (such as on the average photon
number N̄ discussed above). Lower bounds to C(Φ) can

be obtained by calculating the right hand side of (9) for a
specific encoding alphabet, i.e. fixing the value of m (say
m = 1) and using a specific choice of for pi and ρi, as
was done to obtain the inequalities (1)-(3). In contrast,
an upper bound for C(Φ) is provided by

C(Φ) 6 Smax(Φ)− lim
m→∞

Smin(Φ
⊗m)/m , (10)

where Smax(Φ) = maxρ S(Φ(ρ)) is the maximum output
entropy for a single channel use [using the same restric-
tions in the maximization as in the definition of C(Φ)],
and Smin(Ψ) = minρ S(Ψ(ρ)) is the (unrestricted) mini-
mum output entropy of the channel Ψ. The regulariza-
tion over m in (10) is required by the superadditivity of
the minimum output entropy [11], and constitutes the
main difficulty in deriving bounds through (10). How-
ever, if Φ = ΦEB is entanglement-breaking [14, 15], the
regularization is unnecessary [16] and (10) can be re-
placed by

C(ΦEB) 6 Smax(ΦEB)− Smin(ΦEB) , (11)

[notice that both Smin(Φ
⊗m
EB ) and Cχ(Φ

⊗m
EB ) are additive

quantities].
For Φ = EN

η , Nn, or AN
κ the first term on the right of

inequality (10), Smax(Φ), is easily computed by exploit-
ing the fact that the thermal state maximizes the entropy
for fixed average photon number N̄ :

Smax(E
N
η ) = g(ηN̄ + (1− η)N) , (12)

Smax(Nn) = g(N̄ + n) ,

Smax(A
N
κ ) = g(κN̄ + (κ− 1)(N + 1)) .

In contrast, evaluating the second term on the right
of inequality (10) is extremely demanding: the Holevo-
Werner conjecture can be rephrased into a conjecture on
the values of Smin(Φ

⊗m) [6, 7, 17, 18], which states that
the min is achieved by a vacuum state |0〉⊗m. If this
were true, one could use (10) to provide upper bounds
that exactly match the lower bounds (1)-(3). A proof
of this is lacking, but in Ref. [6] several bounds were
obtained for the special case of m = 1: they constrain
Smin(E

N
η ) and Smin(Nn) close to their conjectured values

of g((1 − η)N) and g(n), respectively. Using (11), such
bounds can be immediately translated into constraints
on the capacity C whenever the maps are entanglement-
breaking, i.e. when η 6 N/(N + 1) for EN

η , when n > 1

for Nn, and when N > 1/(κ− 1) for AN
κ [15]. For in-

stance, exploiting this fact, inequality (4) can be de-
rived by replacing the term Smin(EN

η ) of (11) with the
single-mode lower bound A of Ref. [6]. More gener-
ally, the same approach exploited in [6] can be adapted
to the multi-channel use scenario to construct tight in-
equalities directly for the quantities Smin([EN

η ]⊗m)/m
and Smin([Nn]

⊗m)/m. When substituted into (10) to-
gether with the identities (12) these then translate into
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FIG. 2: Plots of the bounds in regimes that emphasize the gap
between the lower and the upper bounds (these regimes are
typically not interesting in practical applications). (a) Ca-
pacity of the Gaussian channel Nn for N̄ = 1. Red curve:
lower bound (3); blue, black, green curves: upper bounds (5),
(16), and (17), respectively. The yellow area emphasizes the
gap between the best upper and lower bounds. (b) Capac-
ity of the passive electromagnetic channel EN

η . Red curve:
lower bound (1); blue curve: upper bound (4) (valid only
for η 6 N/(N + 1) shown as a vertical dashed line where
the channel becomes entanglement breaking); green curve:
Koenig and Smith’s bound from [4]; black line: upper bound
(27); black dashed line: upper bound (24). Here N = 0.5
thermal photons and N̄ = 1 average photons in the signal
(which gives bits-per-photon for each channel use). (c) Plots
of the bounds for the amplifying channel AN

κ with gain κ.
Red curve: lower bound (2); black curve: upper bound (6)
(valid only for κ > (N + 1)/N); green curve: upper bound
(28). The discontinuity for κ = (N + 1)/N (vertical dashed
line) separates the entanglement breaking regime on the right
from the pure-loss regime on the left. Here N = 3 and N̄ = 1.

a collection of upper bounds for C that hold beyond the
entanglement-breaking regime detailed above.
Bounds for the Additive Classical noise channel Nn:—

As detailed below, the bounds a, b, and d of Ref. [6] for
m = 1 can be generalized to arbitrary m as follows

Smin(N
⊗m
n )/m > g(n− 1) , [∀n > 1] (13)

Smin(N
⊗m
n )/m > log2(2n+ 1) , (14)

Smin(N
⊗m
n )/m > 1 + log2(n) , (15)

whence, using (10), Eq. (13) gives (5), while Eqs. (14)
and (15) respectively give the further bounds

C(Nn) 6 g(N̄ + n)− log2(2n+ 1) , (16)

C(Nn) 6 g(N̄ + n)− 1− log2(n) , (17)

[the generalization of the bound c of [6] is not reported
here since it converges to Eq. (14) for m → ∞]. These

bounds are compared to the lower bound (2) in Fig. 2(a):
note how the gap between the upper and lower bounds
closes asymptotically for high noise, n→ ∞.
The proof of Eq. (13), and hence of the bound (5), was

given in Ref. [17] by expanding a generic input state ρ
in terms of its multi-mode Husimi distribution function
and applying the concavity of von Neumann entropy. An
alternative proof follows from inequality a of Ref. [6] and
from (11), using the fact that the channel Nn is entan-
glement breaking for n > 1 [15].
The proof of Eq. (14) exploits the fact that the von

Neumann entropy is never smaller than the Rényi en-
tropy of order 2 [19, 20] i.e. S(ρ) > S2(ρ) := − log2 Tr[ρ

2].
Thus, for all input density matrices ρ of m channel uses
we have

S(N⊗m
n (ρ)) > S2(N

⊗m
n (ρ)) > m log2(2n+ 1) , (18)

where the last inequality follows from the fact that the
minimum Rényi entropy of integer order at the output of
the channel Nn is additive and saturated by the vacuum
input state [21]. The bound (14), and hence (16), follow
by minimizing with respect to ρ.
The proof of Eq. (15) closely follows the proof of bound

d in Ref. [6] form = 1. Indeed, given a generic pure input
state |ψ〉, the eigenvalues γk of the relevant output state
ρ′ = N⊗m

n (|ψ〉〈ψ|) can be expressed as

γk =

∫

d2m~µ P (m)
n (~µ)|〈γk|D(~µ)|ψ〉|2 , (19)

where |γk〉 is the corresponding eigenvector of ρ′, D(~µ)

is the m-mode displacement operator, P
(m)
n (~µ) :=

exp[−|~µ|2/n]/(πn)m, and the integral is performed over
the m-dimensional complex vectors ~µ ∈ C

m. By convex-
ity, for all z > 1 one can write

Tr[(ρ′)z] 6
∑

k

∫

d2m~µ

πm
[πmP (m)

n (~µ)]z |〈γk|D(~µ)|ψ〉|2

= 1/(znz−1)m , (20)

which gives inequality (15), and hence (17), by remem-
bering that S(ρ′) = limz→1+ log2 Tr[(ρ

′)z ]/(1− z) [19,
20].
Bounds for the Lossy Thermal channel EN

η :— The
bounds (13)-(15) can be immediately turned into in-
equalities for Smin([EN

η ]⊗m) by exploiting the compo-

sitions rules [6] that link EN
η and Nn that also ap-

ply to the multi-use scenario m > 1. In particular,
[EN

η ]⊗m = N⊗m
(1−η)N ◦ [E0

η ]
⊗m. Hence, following the same

reasoning of Ref. [6], we find

Smin([E
N
η ]⊗m) > Smin(N

⊗m
(1−η)N ) . (21)

In particular, from (14) and (15) we obtain the multi-use
versions of the bounds B and C of Ref. [6], i.e.,

Smin([E
N
η ]⊗m)/m > log2(2(1− η)N + 1) , (22)

Smin([E
N
η ]⊗m)m > 1 + log2((1 − η)N) , (23)
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which give rise to the following bounds for the capacity

C(EN
η ) 6 g((1− η)N̄ +N)− log2(2(1− η)N + 1) ,

(24)

C(EN
η ) 6 g((1− η)N̄ +N)− 1− log2((1 − η)N) ,

(25)

[the bound obtained from (13) is not reported here as it
is always subsided by the inequality (4)]. Further bounds
can be obtained by generalizing the inequalities E and F
of Ref. [6]: for all integers k, we have for inequality E:

Smin([EN
η ]⊗m)

m
>

k−1
k g( k

k−1 (1− η)N) for η 6 1/k,

Smin([EN
η ]⊗m)

m
>

k−1
k g

(

k
k−1

[

(1− η)N − η +
1

k

])

for η > 1/k, (26)

and for inequality F:

Smin([EN
η ]⊗m)

m
>

k−1
k g((1− η)N)

+ 1
k

Smin([N(1−η)N ]⊗m)

m for η 6 1/k,

Smin([EN
η ]⊗m)

m
>

k−1
k g((1− η)N − η +

1

k
)

+ 1
k

Smin([Nn′ ]⊗m)

m
for η > 1/k, (27)

with n′ = (1 − η)N − η + 1/k [see the supplementary
material for the proof]. The associated bounds for C(EN

η )
are obtained by substituting the above expressions into
Eq. (10) together with the identities (12). In Fig. 2(b)
we report the one associated to (27), together with the
bounds (4) and (24), for a direct comparison with Koenig
and Smith’s inequality [4], and with the lower bound (1).
In the low-noise regime of small N a capacity bound was
presented also in [8].
Bounds for the Amplifying channel AN

κ :— We now
prove that the capacity of the channel AN

κ satisfies in-
equality (6) and

C(AN
κ ) 6 g(κN̄/[N(κ− 1) + κ]), for N < 1

κ−1 , (28)

see Figs. 1(b) and 2(c). The proof of inequality (6) can
be obtained by adapting the derivation of (13) provided
in Ref. [17]. Specifically, the Husimi distribution of a
generic input state ρ for m channel uses is

Q(~α) = 〈~α|ρ|~α〉/πm , ρ =

∫

d2m~α Q(~α) σ(~α) , (29)

where |~α〉 is a m-mode coherent state and σ(~α) :=
∫

d2m~µ
πm D(~µ) e~µ

†·~µ−~µT ·~µ∗−~µ†·~µ/2. The corresponding
output state can then be expressed as [AN

κ ]⊗m[ρ] =
∫

d2m~α Q(~α) [AN
κ ]⊗m[σ(~α)], while the concavity of the

output entropy implies

S([AN
κ ]⊗m[ρ]) >

∫

d2m~α Q(~α)S([AN
κ ]⊗m[σ(~α)]) , (30)

which is meaningful only when [AN
κ ]⊗m[σ(~α)] is a quan-

tum state, i.e. if N(κ − 1) > 1, when [AN
κ ]⊗m[σ(~α)]

is an m-mode thermal state with average photon num-
ber N(κ− 1)− 1 per mode, so that S([AN

κ ]⊗m[σ(~α)]) =
mg(N(κ− 1)− 1). Substituting it into (30) we find

1
mSmin([A

N
κ ]⊗m) > g(N(κ− 1)− 1) , for N > 1

κ−1 (31)

which, through (10), implies (6).
Finally, the proof of the bound (28) uses the concate-

nationAN
κ = A0

G◦E
0
η with G = N(κ−1)+κ and η = κ/G,

the fact that the capacity is always degraded under chan-
nel multiplication, and the fact that C(E0

η ) = g(ηN̄) [9].
Conclusions:— We have given upper and lower bounds

for the classical capacity of important active and passive
bosonic channels, and we have shown that these bounds
asymptotically coincide (yielding the actual capacity) in
the regimes of practical interest, i.e. for low transmissiv-
ity, high thermal noise, or high amplification.
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Supplemental Material

Here we provide explicit derivations of the inequalities (26) and (27).
Proof of Eq. (26):— This inequality can be easily obtained by generalizing to the multimode scenario the beam-

splitter decomposition of the channel EN
η detailed in the Appendix D1 of Ref. [6] [the same decomposition was also

exploited in Ref. [7]]. Consider first the case η = 1/k with k an integer [generalization to arbitrary η will given
later]. The basic idea is to express the transformation induced by the map EN

1/k in terms of a sequence of k− 1 beam-
splitter interactions that couple the incoming signal mode state ρ with k independent bosonic thermal baths states
ρth characterized by the same photon number N . As discussed in Ref. [6] this can be done in such a way that local
observers located at each of the k outputs of the array will receive [up to an irrelevant local unitary transformation]
the same output signal EN

1/3[ρ]. For instance for k = 3 this can be obtained by setting the transmissivity of the first

beam splitter equal to η1 = 2/3 and the second one to η2 = 1/2. The same construction clearly can be applied to
channel [EN

1/k]
⊗m of the m-channel use scenario by repeating the decomposition for each channel independently. An

example of the resulting scheme for k = 3 and m = 2 is shown in Fig. 3: here A1 and A2 represent the two channel
inputs that in principle can be loaded with a non separable state ρ; B1, C1 are instead the two thermal bath modes
needed to represent the first channel use, while B2 and C2 are those associated with the second channel use [all of
them being initialized in thermal states having average photon-number N ]. In this extended configuration one can
easily verify that the two-mode states at the ports A′

1A
′
2, B

′
1B

′
2, and C

′
1C

′
2 of the figure are all unitarily equivalent to

the density matrix [EN
1/3]

⊗2(ρ) [in other words, up to local unitary transformations, each one of those output couples

yields a unitary dilation [3] of the same channel [EN
1/3]

⊗2]. This in particular implies that the associated output

entropies must be identical, i.e. S(A′
1A

′
2) = S(B′

1B
′
2) = S(C′

1C
′
2) = S([EN

1/3]
⊗2(ρ)). Exploiting the sub-additivity of

the von Neumann entropy [3] we can hence write

S(A′
1A

′
2B

′
1B

′
2C

′
1C

′
2) 6 3S([EN

1/3]
⊗2(ρ)) , (32)

where S(A′
1A

′
2B

′
1B

′
2C

′
1C

′
2) is the entropy of the joint state at the output of the device. Observing that the transforma-

tion [i.e., the beam-splitter couplings] that takes the input modes of the system A1A2B1B2C1C2 to their associated
output A′

1A
′
2B

′
1B

′
2C

′
1C

′
2 configuration is unitary, we can then identify S(A′

1A
′
2B

′
1B

′
2C

′
1C

′
2) with the input entropy

S(A1A2B1B2C1C2). The latter can easily be computed by noticing that the incoming state is just a tensor product of
ρ with m(k − 1) = 4 bosonic thermal states with mean photon-number N , i.e., S(A1A2B1B2C1C2) = S(ρ) + 4g(N).
Substituting this into Eq. (32) we finally get

S([EN
1/3]

⊗2(ρ)) > S(ρ) +
4

3
g(N) >

4

3
g(N) . (33)

The same argument can be easily repeated for arbitrary m and k integers: in this case, we use m(k − 1) local bath
modes organized in m parallel rows, each containing k − 1 beam-splitter transformations whose transmissivities are
determined as in Ref. [6]. Similarly to the case explicitly discussed above, an inequality for S([EN

1/k]
⊗m(ρ)) can be

obtained via sub-additivity by grouping the mk output modes into k subsets of m elements each. The resulting
expression is

S([EN
1/k]

⊗m(ρ)) > m
(k − 1)

k
g(N) . (34)
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FIG. 3: Beam splitter-decomposition scheme for the channel [EN
η ]⊗m with η = 1/3 and m = 2. Thermal states of mean

photon-number N are injected at the input ports B1, C1, B2, and C2.
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FIG. 4: Beam-splitter array used to derive Eq. (27), depicted for m = 2.

Generalization of this inequality to η 6 1/k can finally be obtained along the same lines used in Ref. [6] by exploiting
the following composition rules

[EN2
η2

]⊗m ◦ [EN1
η1

]⊗m = [EN ′

η1η2
]⊗m , (35)

which is a trivial multi-mode generalization of the identity (19) from [6] [here N ′ = [η2(1− η1)N1 + (1− η2)N2]/(1−
η1η2)]. The reader can check that the resulting expression coincides with the first part of the inequality (26). Similarly,
Eq. (34) can be used to induce a bound for η > 1/k by following the same line of reasoning presented in [6] while
exploiting the composition rule

[EN
η ]⊗m = [EN ′

η′ ]⊗m ◦ [A0
η/η′ ]⊗m , for η > η′, (36)

which is the m-mode counterpart of the identity (B3) of [6]. The resulting inequality yields the second part of (26).
Proof of Eq. (27):— The m = 1 version of this inequality was derived in [6], by exploiting a beam-splitter array

obtained by applying a channel Nn at each of the output ports of the scheme used to derive the m = 1 equivalent
of Eq. (26) [see Fig. 12 of [6]]. As for Eq. (26), the main difficulty in applying the same argument to arbitrary m
is generalizing such an array to the multi-mode case scenario and properly grouping the corresponding output ports.
This can be done as sketched in Fig. 4: i.e., adding Nn to each of the ports in Fig. 3 and by keeping the same grouping
scheme as before. With this guidance the reader can now closely follow the same derivation given in Ref. [6] [the steps
are rather cumbersome, but basically coincide with those we have discussed in the previous section].


