50 research outputs found

    Maternal Expression Relaxes Constraint on Innovation of the Anterior Determinant, bicoid

    Get PDF
    The origin of evolutionary novelty is believed to involve both positive selection and relaxed developmental constraint. In flies, the redesign of anterior patterning during embryogenesis is a major developmental innovation and the rapidly evolving Hox gene, bicoid (bcd), plays a critical role. We report evidence for relaxation of selective constraint acting on bicoid as a result of its maternal pattern of gene expression. Evolutionary theory predicts 2-fold greater sequence diversity for maternal effect genes than for zygotically expressed genes, because natural selection is only half as effective acting on autosomal genes expressed in one sex as it is on genes expressed in both sexes. We sample an individual from ten populations of Drosophila melanogaster and nine populations of D. simulans for polymorphism in the tandem gene duplicates bcd, which is maternally expressed, and zerknΓΌllt (zen), which is zygotically expressed. In both species, we find the ratio of bcd to zen nucleotide diversity to be two or more in the coding regions but one in the noncoding regions, providing the first quantitative support for the theoretical prediction of relaxed selective constraint on maternal-effect genes resulting from sex-limited expression. Our results suggest that the accelerated rate of evolution observed for bcd is owing, at least partly, to variation generated by relaxed selective constraint

    Hyperexpression of the X Chromosome in Both Sexes Results in Extensive Female Bias of X-Linked Genes in the Flour Beetle

    Get PDF
    A genome's ability to produce two separate sexually dimorphic phenotypes is an intriguing biological mystery. Microarray-based studies of a handful of model systems suggest that much of the mystery can be explained by sex-biased gene expression evolved in response to sexually antagonistic selection. We present the first whole-genome study of sex-biased expression in the red flour beetle, Tribolium castaneum. Tribolium is a model for the largest eukaryotic order, Coleoptera, and we show that in whole-body adults, ∼20% of the transcriptome is differentially regulated between the sexes. Among T. castaneum, Drosophila melanogaster, and Anopheles gambiae, we identify 416 1:1:1 orthologs with conserved sex-biased expression. Overrepresented functional categories among sex-biased genes are primarily those involved in gamete production and development. The genomic distribution of sex-biased genes in T. castaneum is distinctly nonrandom, with the strongest deficit of male-biased genes on the X chromosome (9 of 793) of any species studied to date. Tribolium also shows a significant enrichment of X-linked female-biased genes (408 of 793). Our analyses suggest that the extensive female bias of Tribolium X chromosome gene expression is due to hyperexpression of X-linked genes in both males and females. We propose that the overexpression of X chromosomes in females is an evolutionary side effect of the need to dosage compensate in males and that mechanisms to reduce female X chromosome gene expression to autosomal levels are sufficient but imperfect

    Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome

    Get PDF
    Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes

    Genome of the Asian Longhorned Beetle (\u3cem\u3eAnoplophora glabripennis\u3c/em\u3e), a Globally Significant Invasive Species, Reveals Key Functional and Evolutionary Innovations at the Beetle-Plant Interface

    Get PDF
    Background: Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. Results: The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Conclusions: Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants

    Sex, War, and Disease: The Role of Parasite Infection on Weapon Development and Mating Success in a Horned Beetle (Gnatocerus cornutus)

    Get PDF
    While parasites and immunity are widely believed to play important roles in the evolution of male ornaments, their potential influence on systems where male weaponry is the object of sexual selection is poorly understood. We experimentally infect larval broad-horned flour beetles with a tapeworm and study the consequent effects on: 1) adult male morphology 2) male-male contests for mating opportunities, and 3) induction of the innate immune system. We find that infection significantly reduces adult male size in ways that are expected to reduce mating opportunities in nature. The sum of our morphological, competition, and immunological data indicate that during a life history stage where no new resources are acquired, males allocate their finite resources in a way that increases future mating potential

    The Evolution of Mammalian Gene Families

    Get PDF
    Gene families are groups of homologous genes that are likely to have highly similar functions. Differences in family size due to lineage-specific gene duplication and gene loss may provide clues to the evolutionary forces that have shaped mammalian genomes. Here we analyze the gene families contained within the whole genomes of human, chimpanzee, mouse, rat, and dog. In total we find that more than half of the 9,990 families present in the mammalian common ancestor have either expanded or contracted along at least one lineage. Additionally, we find that a large number of families are completely lost from one or more mammalian genomes, and a similar number of gene families have arisen subsequent to the mammalian common ancestor. Along the lineage leading to modern humans we infer the gain of 689 genes and the loss of 86 genes since the split from chimpanzees, including changes likely driven by adaptive natural selection. Our results imply that humans and chimpanzees differ by at least 6% (1,418 of 22,000 genes) in their complement of genes, which stands in stark contrast to the oft-cited 1.5% difference between orthologous nucleotide sequences. This genomic β€œrevolving door” of gene gain and loss represents a large number of genetic differences separating humans from our closest relatives

    The Evolution of Mammalian Gene Families

    No full text

    Data from: Gene expression levels are correlated with synonymous codon usage, amino acid composition and gene architecture in the red flour beetle, Tribolium castaneum

    No full text
    Gene expression levels correlate with multiple aspects of gene sequence and gene structure in phylogenetically diverse taxa suggesting an important role of gene expression levels in the evolution of protein-coding genes. Here we present results of a genome-wide study of the influence of gene expression on synonymous codon usage, amino acid composition and gene structure in the red flour beetle, Tribolium castaneum. Consistent with the action of translational selection, we find that synonymous codon usage bias increases with gene expression. However, the correspondence between tRNA gene copy number and optimal codons is weak. At the amino acid level, translational selection is suggested by the positive correlation between tRNA gene numbers and amino acid usage which is stronger for highly expressed genes. In addition, there is a clear trend for increased use of metabolically cheaper, less complex, amino acids as gene expression increases. tRNA gene numbers also correlate negatively with amino acid size/complexity score indicating the coupling between translational selection and selection to minimize the use of large/complex amino acids. Interestingly, the correlation between tRNA gene numbers and amino acid size/complexity score appears to be widespread given our analyses of 10 additional genomes and might be explained by selection against negative consequences of protein misfolding. At the level of gene structure, three major trends are detected 1) CDS length increases across low and intermediate expression levels but decreases in highly expressed genes; 2) the average intron size shows the opposite trend, first decreasing with expression, followed by a slight increase in highly expressed genes and 3) intron density remains nearly constant across all expression levels. These changes in gene architecture are only in partial agreement with selection favoring reduced cost of biosynthesis

    Data from: Estimating tempo and mode of Y chromosome turnover: explaining Y chromosome loss with the fragile Y hypothesis

    No full text
    Chromosomal sex determination is phylogenetically widespread, having arisen independently in many lineages. Decades of theoretical work provide predictions about sex chromosome differentiation that are well supported by observations in both XY and ZW systems. However, the phylogenetic scope of previous work gives us a limited understanding of the pace of sex chromosome gain and loss and why Y or W chromosomes are more often lost in some lineages than others, creating XO or ZO systems. To gain phylogenetic breadth we therefore assembled a database of 4724 beetle species’ karyotypes and found substantial variation in sex chromosome systems. We used the data to estimate rates of Y chromosome gain and loss across a phylogeny of 1126 taxa estimated from seven genes. Contrary to our initial expectations, we find that highly degenerated Y chromosomes of many members of the suborder Polyphaga are rarely lost, and that cases of Y chromosome loss are strongly associated with chiasmatic segregation during male meiosis. We propose the β€œfragile Y” hypothesis, that recurrent selection to reduce recombination between the X and Y chromosome leads to the evolution of a small pseudoautosomal region (PAR), which, in taxa that require XY chiasmata for proper segregation during meiosis, increases the probability of aneuploid gamete production, with Y chromosome loss. This hypothesis predicts that taxa that evolve achiasmatic segregation during male meiosis will rarely lose the Y chromosome. We discuss data from mammals, which are consistent with our prediction
    corecore