61 research outputs found

    Rabbit Knee Joint Biomechanics: Motion Analysis and Modeling of Forces during Hopping

    Full text link
    Although the rabbit hindlimb has been commonly used as an experimental animal model for studies of osteoarthritis, bone growth and fracture healing, the in vivo biomechanics of the rabbit knee joint have not been quantified. The purpose of this study was to investigate the kinematic and kinetic patterns during hopping of the adult rabbit, and to develop a model to estimate the joint contact force distribution between the tibial plateaus. Force platform data and three-dimensional motion analysis using infrared markers mounted on intracortical bone pins were combined to calculate the knee and ankle joint intersegmental forces and moments. A statically determinate model was developed to predict muscle, ligament and tibiofemoral joint contact forces during the stance phase of hopping. Variations in hindlimb kinematics permitted the identification of two landing patterns, that could be distinguished by variations in the magnitude of the external knee abduction moment. During hopping, the prevalence of an external abduction moment led to the prediction of higher joint contact forces passing through the lateral compartment as compared to the medial compartment of the knee joint. These results represent critical data on the in vivo biomechanics of the rabbit knee joint, which allow for comparisons to both other experimental animal models and the human knee, and may provide further insight into the relationships between mechanical loading, osteoarthritis, bone growth, and fracture healing

    Spatial and Temporal Trends of Global Pollination Benefit

    Get PDF
    Pollination is a well-studied and at the same time a threatened ecosystem service. A significant part of global crop production depends on or profits from pollination by animals. Using detailed information on global crop yields of 60 pollination dependent or profiting crops, we provide a map of global pollination benefits on a 5′ by 5′ latitude-longitude grid. The current spatial pattern of pollination benefits is only partly correlated with climate variables and the distribution of cropland. The resulting map of pollination benefits identifies hot spots of pollination benefits at sufficient detail to guide political decisions on where to protect pollination services by investing in structural diversity of land use. Additionally, we investigated the vulnerability of the national economies with respect to potential decline of pollination services as the portion of the (agricultural) economy depending on pollination benefits. While the general dependency of the agricultural economy on pollination seems to be stable from 1993 until 2009, we see increases in producer prices for pollination dependent crops, which we interpret as an early warning signal for a conflict between pollination service and other land uses at the global scale. Our spatially explicit analysis of global pollination benefit points to hot spots for the generation of pollination benefits and can serve as a base for further planning of land use, protection sites and agricultural policies for maintaining pollination services

    Economic Analysis of Labor Markets and Labor Law: An Institutional/Industrial Relations Perspective

    Get PDF

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Disconnected submarine lobes as a record of stepped slope evolution over multiple sea-level cycles

    Get PDF
    The effects of abrupt changes in slope angle and orientation on turbidity current behavior have been investigated in numerous physical and numerical experiments and examined in outcrop, subsurface, and modern systems. However, the long-term impact of subtle and evolving seabed topography on the stratigraphic architecture of deep-water systems requires fine-scale observations and extensive 3-D constraints. This study focuses on the Permian Laingsburg and Fort Brown formations, where multiple large sand-rich systems (Units A–F) have been mapped from entrenched slope valleys, through channel-levee systems, to basin-floor lobe complexes over a 2500 km2 area. Here, we investigate three thinner (typically <5 m in thickness) and less extensive sand-rich packages, Units A/B, B/C, and D/E, between the large-scale systems. Typically, these sand-rich units are sharp-based and topped, and contain scours and mudstone clast conglomerates that indicate deposition from high-energy turbidity currents. The mapped thickness and facies distribution suggest a lobate form. These distinctive units were deposited in similar spatial positions within the basin-fill and suggest similar accommodation patterns on the slope and basin floor prior to the larger systems (B, C, and E). Stratigraphically, these thin units represent the first sand deposition following ­major periods of shut-down in sediment supply, and are interpreted as marking a partial re-establishment of sand delivery pathways creating “disconnected lobes” that are fed mainly by flows sourced from failures on the shelf and upper slope rather than major feeder channel-levee systems. Thickness and facies patterns throughout the deep-water stratigraphy suggest seabed topography was present early in the basin formation and maintained persistently in a similar area to ultimately form a stepped slope profile. The stepped slope profile evolved through three key stages of development: Phase 1, where sediment supply exceeds deformation rate (likely caused by differential subsidence); Phase 2, where sediment supply is on average equal to deformation rate; and Phase 3, where deformation rate outpaces sediment supply. This study demonstrates that smaller systems are a sensitive record of evolving seabed topography and they can consequently be used to recreate more accurate paleotopographic profiles

    The Petrochemistry of Jake_M: A Martian Mugearite

    Full text link
    “Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (&gt;15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes).</jats:p

    Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover

    Full text link
    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.</jats:p

    Hot-Pressed Versus Sintered LiTi2(PO4)3

    No full text
    corecore