80 research outputs found
Forecasting inflation using dynamic model averaging
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coefficients to change over time, but also allow for the entire forecasting model to change over time. We find that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coefficient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period
On Variational Data Assimilation in Continuous Time
Variational data assimilation in continuous time is revisited. The central
techniques applied in this paper are in part adopted from the theory of optimal
nonlinear control. Alternatively, the investigated approach can be considered
as a continuous time generalisation of what is known as weakly constrained four
dimensional variational assimilation (WC--4DVAR) in the geosciences. The
technique allows to assimilate trajectories in the case of partial observations
and in the presence of model error. Several mathematical aspects of the
approach are studied. Computationally, it amounts to solving a two point
boundary value problem. For imperfect models, the trade off between small
dynamical error (i.e. the trajectory obeys the model dynamics) and small
observational error (i.e. the trajectory closely follows the observations) is
investigated. For (nearly) perfect models, this trade off turns out to be
(nearly) trivial in some sense, yet allowing for some dynamical error is shown
to have positive effects even in this situation. The presented formalism is
dynamical in character; no assumptions need to be made about the presence (or
absence) of dynamical or observational noise, let alone about their statistics.Comment: 28 Pages, 12 Figure
Sensitivity And Out-Of-Sample Error in Continuous Time Data Assimilation
Data assimilation refers to the problem of finding trajectories of a
prescribed dynamical model in such a way that the output of the model (usually
some function of the model states) follows a given time series of observations.
Typically though, these two requirements cannot both be met at the same
time--tracking the observations is not possible without the trajectory
deviating from the proposed model equations, while adherence to the model
requires deviations from the observations. Thus, data assimilation faces a
trade-off. In this contribution, the sensitivity of the data assimilation with
respect to perturbations in the observations is identified as the parameter
which controls the trade-off. A relation between the sensitivity and the
out-of-sample error is established which allows to calculate the latter under
operational conditions. A minimum out-of-sample error is proposed as a
criterion to set an appropriate sensitivity and to settle the discussed
trade-off. Two approaches to data assimilation are considered, namely
variational data assimilation and Newtonian nudging, aka synchronisation.
Numerical examples demonstrate the feasibility of the approach.Comment: submitted to Quarterly Journal of the Royal Meteorological Societ
Large Time-Varying Parameter VARs
In this paper, we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints, we draw on ideas from the dynamic model averaging literature which achieve reductions in the computational burden through the use forgetting factors. We then extend the TVP-VAR so that its dimension can change over time. For instance, we can have a large TVP-VAR as the forecasting model at some points in time, but a smaller TVP-VAR at others. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output and interest rates demonstrates the feasibility and usefulness of our approach
Itâs all about volatility of volatility: evidence from a two-factor stochastic volatility model
The persistent nature of equity volatility is investigated by means of a multi-factorstochastic volatility model with time varying parameters. The parameters are estimated bymeans of a sequential matching procedure which adopts as auxiliary model a time-varying generalization of the HAR model for the realized volatility series. It emerges that during the recent financial crisis the relative weight of the daily component dominates over the monthly term. The estimates of the two factor stochastic volatility model suggest that the change in the dynamic structure of the realized volatility during the financial crisis is due to the increase in the volatility of the persistent volatility term. As a consequence of the dynamics in the stochastic volatility parameters, the shape and curvature of the volatility smile evolve trough time
Joint state and parameter estimation for distributed mechanical systems
We present a novel strategy to perform estimation for a dynamical mechanical system in standard operating conditions, namely, without ad hoc experimental testing. We adopt a sequential approach, and the joint state-parameter estimation procedure is based on a state estimator inspired from collocated feedback control. This type of state estimator is chosen due to its particular effectiveness and robustness, but the methodology proposed to adequately extend state estimation to joint state-parameter estimation is general, and - indeed -applicable with any other choice of state feedback observer. The convergence of the resulting joint estimator is mathematically established. In addition, we demonstrate its effectiveness with a biomechanical test problem defined to feature the same essential characteristics as a heart model, in which we identify localized contractility and stiffness parameters using measurements of a type that is available in medical imaging
- âŠ