
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Grassi, Stefano and Santucci de Magistris, Paolo  (2015) It’s all about volatility of volatility: evidence
from a two-factor stochastic volatility model.   Journal of Empirical Finance, 30 .   pp. 62-78.
 ISSN 0927-5398.

DOI

http://doi.org/10.1016/j.jempfin.2014.11.007

Link to record in KAR

http://kar.kent.ac.uk/49295/

Document Version

UNSPECIFIED

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30708952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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evidence from a two-factor stochastic volatility model ∗
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Abstract

The persistent nature of equity volatility is investigated by means of a multi-factor
stochastic volatility model with time varying parameters. The parameters are estimated by
means of a sequential matching procedure which adopts as auxiliary model a time-varying
generalization of the HAR model for the realized volatility series. It emerges that during the
recent financial crisis the relative weight of the daily component dominates over the monthly
term. The estimates of the two factor stochastic volatility model suggest that the change
in the dynamic structure of the realized volatility during the financial crisis is due to the
increase in the volatility of the persistent volatility term. As a consequence of the dynamics
in the stochastic volatility parameters, the shape and curvature of the volatility smile evolve
trough time.
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1 Introduction

The aim of this paper is to evaluate whether the observed changes in the dynamic behavior of

the realized volatility (RV) series, in correspondence to the financial crises, are linked to changes

in the structural parameters governing the stochastic volatility (SV) dynamics. In other words

the observed changes in the dynamic pattern of RV series during the financial crises may be seen

as the outcome of structural breaks in the parameters governing the dynamics of the continuous-

time SV process. For this purpose, a two factors SV model (TFSV) is chosen as structural model,

since, as noted by Gallant et al. (1999) and Meddahi (2002, 2003), it successfully accounts for

the long range dependence of the volatility process. Given the difficulty of a direct estimation

of breaks in the TFSV parameters, we adapt the indirect inference procedure suggested by

Corsi and Reno (2012) to the case in which the SV parameters are allowed to be recursively

updated. We therefore propose a sequential matching of the parameters, exploiting a flexible

specification for the auxiliary model, which is built on an ex-post measure of the integrated

variance. The auxiliary model is a simple time varying extension of the well-known HAR model

of Corsi (2009), and it represents a tool to evaluate to what extent the parameters governing

the dynamic structure of the RV process vary over time. The time-varying HAR (TV-HAR) is

interesting per se since it constitutes a tool to evaluate the evolution of the relative weight of each

volatility component to the overall volatility persistence. Following Raftery et al. (2010) and

Koop and Korobilis (2012), we use a fast on-line method to extract the TV-HAR parameters,

allowing for a rapid update of the estimates as each new piece of information arrives. The

advantage of the proposed estimation method is that it does not require to identify the number

of change points and avoids the use of computationally intensive algorithms, such as MCMC.

The empirical analysis is carried out on the volatility series of 15 assets traded on the

NYSE, which are supposed to be representative of the main sectors of the US economy. The

estimates of the TFSV model indicate that the change in persistence is due to the increase of the

relative weight of the persistent volatility component during the financial crisis. In particular,

the volatility of the persistent factor increases relatively to that of the non-persistent factor,

generating trajectories that deviate for longer periods from the unconditional mean. This may

generate the impression of level shifts in the observed realized series. However the model selection

procedure, based on the predictive likelihood, excludes that breaks in the long-run mean during

the financial crises are responsible for the increase in the observed persistence of the volatility
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series. Moreover, the higher volatility of the persistent volatility factor increases the degree of

dispersion of the volatility around its long-run value, and thus the volatility of volatility (see

Corsi et al., 2008). Interestingly, the growth of the volatility of the persistent factor is reflected

in an increase of the relative weight of the daily volatility component in the auxiliary TV-HAR

model. In particular, the daily term becomes the main factor during the financial crisis. On

the other hand, the monthly component has a larger role during the low volatility period which

characterizes the years 2004-2007. Finally, the presence of breaks in the SV parameters is shown

to have important implications from an option pricing perspective. In particular, the implied

volatility smile evolves as the parameters of the SV model are recursively updated. It strongly

emerges that the variation in the SV parameters induces changes not only in the level of the

smile, but also in its curvature/convexity, which is linked to the increase in the excess kurtosis

generated by an increment in the volatility of volatility.

The paper is organized as follows. Section 2 introduces the TV-HAR model, while Section

3 suggests a method to find a link between the TV-HAR model and a TFSV model with time

varying parameters. Section 4 presents the results of the empirical analysis based on 15 stocks

traded on NYSE. Section 5 provides Monte Carlo simulations to evaluate the robustness of the

empirical results presented in Section 4. Section 6 concludes.

2 The time-varying HAR model

Strong empirical evidence, dating back to the seminal papers of Engle (1982) and Bollerslev

(1986), supports the idea that the volatility of financial returns is time varying, stationary

and long-range dependent. This evidence is confirmed by the statistical analysis of the ex-post

volatility measures, such as RV, which are precise estimates of latent integrated variance and are

obtained from intradaily returns, see Andersen and Bollerslev (1998), Andersen et al. (2001) and

Barndorff-Nielsen and Shephard (2002) among many others. In the last decade, particular effort

has been spent in developing discrete time series models for ex-post volatility measures, which

are able to capture the persistence of the observed volatility series.1 Reduced form time series

models for RV have been extensively studied during the last decade. For instance, Andersen

et al. (2003), Giot and Laurent (2004), Lieberman and Phillips (2008) and Martens et al. (2009)

report evidence of long memory and model RV as a fractionally integrated process. As noted by

1Recent papers by McAleer and Medeiros (2011) and Asai et al. (2012) present detailed surveys of alternative
models for RV.
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Ghysels et al. (2006) and Forsberg and Ghysels (2007) mixed data sampling approaches are also

empirically successful in accounting for the observed strong serial dependence. In particular,

Corsi (2009) approximates long range dependence by means of a long lagged autoregressive

process, called heterogeneous-autoregressive model (HAR). The main feature of the HAR model

is its interpretation as a volatility cascade, where each volatility component is generated by the

actions of different types of market participants with different investment horizons. HAR type

parameterizations are also suggested by Corsi et al. (2008), Andersen et al. (2007) and Andersen

et al. (2011).

In its simplest version, the HAR model of Corsi (2009) is defined as

Xt = α+ φdXt−1 + φwXw
t−1 + φmXm

t−1 + εt, εt ∼ N(0, σ2
ε ), (1)

where Xt = log(RVt), X
w
t = 1

5

∑4
j=0Xt−j , X

m
t = 1

22

∑21
j=0Xt−j , and θ =

[

φd, φw, φm
]

. It is

clear that the HAR model is a AR(22) with linear restrictions on the autoregressive parameters.

In particular, there are three free parameters with an autoregressive equation with 22 lags.

Corsi et al. (2008) and Corsi (2009) show that the HAR model is able to reproduce the long-

range dependence typical of RV series. However, as noted by Maheu and McCurdy (2002) and

McAleer and Medeiros (2008), the dynamic pattern of RV is subject to structural breaks and

could potentially vary over time. This evidence is also confirmed by Liu and Maheu (2008),

Choi et al. (2010) and Bordignon and Raggi (2012) who find that structural breaks in the mean

are partly responsible for the persistence of RV.

In light of the recent global financial crisis, and the different behavior of RV series during

periods of high and low trading activity, a time-varying coefficients model may lead to a better

understanding of the volatility dynamics. For example, in the GARCH framework, time-varying

parameter models are found to be empirically successful by Dahlhaus and Rao (2007a,b), Engle

and Rangel (2008), Bauwens and Storti (2009) and Frijns et al. (2011), among others. Since the

underlying data-generating process of a time varying coefficient model is unknown, we propose a

flexible and simple model structure, that is able to generate a large variety of dynamic behaviors.

Primiceri (2005), Cogley and Sargent (2005) and Koop et al. (2009) among others, testify the

empirical success of such models in characterizing macroeconomic series. In contrast to Liu and

Maheu (2008) and McAleer and Medeiros (2008), our model allows for a potentially large number

of changing points of the HAR parameters. In particular, we let φd, φw and φm in equation (1)
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follow random walk dynamics. Therefore, the parameters φd
t , φ

w
t and φm

t measure the proportion

of the total variance that is captured by each volatility component at time t. Hence, the TV-

HAR parameters are interpreted as time varying weights for each volatility component and the

model is given by

Xt = αt + φd
tXt−1 + φw

t X
w
t−1 + φm

t Xm
t−1 + εt, εt ∼ N(0,Ht)

αt = αt−1 + ηαt , φd
t = φd

t−1 + ηφ
d

t ,

φw
t = φw

t−1 + ηφ
w

t , φm
t = φm

t−1 + ηφ
m

t .

(2)

where Ht is a scalar and ηt ≡ [ηαt , η
φd

t , ηφ
w

t , ηφ
m

t ] ∼ N(0,Qt) and Qt is a 4× 4 covariance matrix.

Alternatively, assuming that the unconditional mean of Xt is constant, it is possible to work

on the centered log-volatility series,

yt = φd
t yt−1 + φw

t y
w
t−1 + φm

t ymt−1 + εt, εt ∼ N(0, σ2
ε ), (3)

where yt = Xt − X̄t with X̄t
p
→ µ ≡ E(Xt), so that both sides of equation (3) have zero mean.

Both models in equations (2) and (3) can be easily extended to include other covariates, such

as price jumps, past negative returns, or other financial variables.

It should be noted that excluding the intercept from model (2) rules out the possible presence

of level shifts in the mean of the process. In this case, changes in the persistence of the process can

only be generated by changes in its autoregressive structure. This parameterization avoids the

lack of identification of the unconditional mean when the roots of the autoregressive polynomial

of the TV-HAR are such that the process is non-stationarity. This issue will be further discussed

in Section 4.

The models in equations (2) and (3) present a flexible structure, that depends not only on

the autoregressive behavior of Xt and yt, but also on the dynamics of the HAR parameters. At

each point in time, a different set of parameters must be estimated. The adopted estimation

algorithm for the TV-HAR model follows the methodology proposed by Raftery et al. (2010) and

Koop and Korobilis (2012), and extracts the time-varying parameters by means of a modified

Kalman filter routine based on the so called forgetting parameter, λ. We propose a selection

method for the forgetting parameter, such that the optimal λ is chosen in order to minimize the

mean squared one-step-ahead forecasting error. Hence, the proposed estimation method allows

for a fast update of the estimates as each new piece of information becomes available, from which
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the name on-line method. The details on the on-line estimation method and the selection of

the forgetting parameter are presented in Appendix A.

3 The two-factor stochastic volatility model

A deeper understanding of the volatility dynamics can be achieved from a structural point

of view, exploiting the TV-HAR as an auxiliary model for the estimation of the parameters

of a TFSV model. From this point of view, the TV-HAR is considered as a flexible reduced

form model, that allows to summarize the dynamic features of the RV series and to provide

informations regarding possible breaks in the parameters of the structural model. Finding a

link between between the HAR and the TFSV parameters allows to interpret the origin of the

changes in persistence and in variability of the observed RV series as generated by changes in

the structural parameters. This could be exploited to explain how the volatility smile changes

according to the persistence and the variability of the volatility process, so that the implied

volatility curve assumes different shapes at different points in time.

In order to find a link between TV-HAR and the continuous time SV model, we implement a

sequential estimation of the SV parameters, based on the matching of the parameters of the time-

varying auxiliary model. Similarly to the indirect inference method of Gourieroux et al. (1993),

the sequential matching involves the simulation of the trajectories of RV from the structural

model such that the distance between the parameters estimates of the auxiliary model on the

observed data and on the simulated series is minimized. In the RV context, the simulation-based

inference methods have been already employed by Bollerslev and Zhou (2002), Andersen et al.

(2002) and Corsi and Reno (2012). We assume that the SV model follows a TFSV model:

dp(t) = γ(t)dW p
1 (t) + ζ(t)dW p

2 (t)

dγ2(t) = κ(ω − γ2(t))dt+ ηγ(t)dW γ(t)

dζ2(t) = δ(ω − ζ2(t))dt+ νζ(t)dW ζ(t)

(4)

where dp(t) is the log price, W p
1 (t), W p

2 (t), W γ(t) and W ζ(t) are Brownian motions. The

parameters κ and δ govern the speed of mean reversion, while η and ν determine the volatility

of the volatility innovations. The parameter ω is the long-run mean of each volatility component

and, as in Corsi and Reno (2012), it is assumed to be the same for both γ2(t) and ζ2(t).

Corsi and Reno (2012) provide estimates of the parameters of the TFSV model based on the
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estimates of the HAR-RV model. Here, we follow a similar pattern, by exploiting the TV-HAR

as auxiliary model. Given that the estimates of the TV-HAR change at each point in time, then

the parameter matching is carried out sequentially, thus resulting in a sequence of values for the

parameters of the TFSV model.

The estimation algorithm proceeds as follow. Denote by Θt the parameter vector of the

TV-HAR model and by Ψt the parameter vector of the TFSV model:

i. Estimate the auxiliary model on the observed data and denote the estimated parameter

vector by Θ̂t, for t = 1, . . . , T .

ii. At time t, generate S = 100 trajectories of M̄ = 78 intradaily returns (Euler discretization)

for N̄ = 3000 days from the TFSV with parameter vector Ψt. Each return trajectory is

denoted as rN̄,M̄ .

iii. For each simulated trajectory, compute the daily RV series, RV ∗
n =

∑M̄
i=1 r

2
n,i for n =

1, . . . , N̄ .

iv. Estimate the HAR model on each logRV ∗
n series. The estimates are denoted by Θ∗

j(Ψt)

with j = 1, . . . , S.

v. The parameters of the TFSV model at time t are estimated by Ψ̂t = argmin
Ψt

Ξt with

Ξt =





S
∑

j=1

[

Θ̂t −Θ∗
j(Ψt)

]





′

W̄t





S
∑

j=1

[

Θ̂t −Θ∗
j(Ψt)

]



 (5)

where the W̄t is a suitable weight matrix. Following Corsi and Reno (2012), W̄t is chosen as

the inverse of the covariance matrix of the auxiliary parameters in each period t, W̄t = Q−1
t .

vi. Finally, iterating ii) - v) for t = 1, . . . , T , produces a sequence of estimates of Ψt.

Model (4) can be easily extended to include leverage effect, i.e. ρp,γ = corr(W p
1 (t),W

γ) 6= 0

and ρp,γ = (W p
2 (t),W

ζ) 6= 0. In this case ρp,γ and ρp,ζ need to be estimated, such that the

auxiliary model must include at least two additional parameters in order to be able to identify

all the structural parameters. Similarly to Corsi and Reno (2012), past negative returns can be

included as explanatory variables in TV-HAR model. Hence, the TV-HAR model (3) would be

modified as

yt = φd
t yt−1 + φw

t y
w
t−1 + φm

t ymt−1 + δdt r
−
t−1 + δwt r

w,−
t−1 + δmt rm,−

t−1 + εt, εt ∼ N(0, σ2
ε ), (6)
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where r−t−1 is the past negative return and rw,−
t = 1

5

∑4
j=0 r

−
t−j and rw,−

t = 1
22

∑21
j=0 r

−
t−j .

Another possible extension of the model in equation (4) is to assume that the log-price, p(t),

follows a jump-diffusion process. However, we rule out the possibility of price jumps and the

empirical analysis is carried out on the bi-power variation (BPV), which is a precise ex-post

measure of volatility which is robust to jump in prices, see Barndorff-Nielsen and Shephard

(2006).

4 Empirical results

The empirical analysis is based on daily series of logBPV for 15 assets traded on the NYSE. The

sample covers the period from January 2, 2004 to December 31, 2009 for a total of 1510 days.

The stocks are selected in order to be representative of the main sectors of the US economy, see

Table 1. Due to the inclusion of the recent financial crisis period in the sample, 8 out of the 15

stocks are selected from the banking and financial sectors. The selected stocks from this sector

are: American Express, AXP , Bank of America, BAC, Citygroup, C, Goldman-Sachs, GS,

JP-Morgan, JPM , Met-Life, MET , Morgan-Stanley, MS, Wells-Fargo, WFC. Other included

companies are Boeing, BA, General Electrics, GE, International Business Machines, IBM , Mc

Donalds, MCD, Procter & Gamble, PG, AT&T, T , Exxon, XOM .

Our primary dataset consists of tick-by-tick transaction prices, which are sampled once every

5 minutes, according to the previous-tick method. The daily BPV series is then computed using

5 minutes logarithmic returns. During the period 2004-2007 the log-volatilities are rather stable

and low, whereas during the financial crisis period there is, as expected, an increase of the

volatility levels.2 Even though the log-volatility series is found to be stationary using standard

unit-root tests, it is interesting to evaluate if the peculiar patterns of the series in the period

2008-2009 is reflected in a change in the TV-HAR parameters.

The on-line estimation method, described in Appendix A, requires a diffuse prior on the

initial states. Following Koop and Korobilis (2012), we set θ0 ∼ N(0, 100), so that the learning

algorithm is rather unstable for the initial observations, which are not plotted. Figure 1 reports

the estimated parameters of the TV-HAR model for the period 2006-2009 for three volatility

series.3 From all figures, an interesting stylized fact emerges: the daily volatility component

becomes more relevant during the period 2008-2009, i.e. during the financial crisis. On the

2Due to space constraints, some graphs are reported in the Web Appendix. A plot of the daily logBPV for
three assets is reported in Figure 1 in the Web Appendix.

3The results for AXP, GE and IBM are only reported. Graphs for all stocks are available upon request.
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other hand, the weight of the weekly component does not present a clear trend, while the

monthly component drops after August 2007 and becomes insignificant in the last period. The

extent of the variation with respect to the OLS estimates (blue dashed line) is notable especially

for φd and φm. In particular, the on-line estimates of φd lie below the 90% OLS confidence

interval at the beginning of the sample, while they lie above at the end of the sample. The

opposite behavior characterizes the on-line estimates of φm.

Table 2 reports some sample statistics pertaining to the TV-HAR parameters. It is interest-

ing to note the extent of the variation of φd and φm, such that the contribution of each volatility

component to the overall market activity decreases with the horizon of aggregation during the

period 2008-2009. The period 2006-2007 is characterized by the weekly and monthly volatility

components while, at the end of the sample, the daily volatility becomes the relevant term. The

estimation of the TV-HAR parameters has also been performed on the logBPV series including

the intercept as in model (2).

In order to compare the out-of-sample performances of models (2) and (3), we follow the

approach suggested in Eklund and Karlsson (2007) and we compute the log predictive likelihood,

log(PL), of each model. The use of predictive measures of fit offers greater protection against in-

sample overfitting and improves the forecast performance. A solution to the in-sample overfitting

is to consider explicitly the out-of-sample (predictive) performance of each model. First it

is necessary to split the sample YT = (y1, . . . , yT )
′

into two parts with s and t observations

respectively, with T = s + t. The first part of the sample, Ys = (y1, . . . , ys)
′

, is used in the

model estimation and the second part, Yt = (ys+1, . . . , yT )
′

, is used for evaluating the model

performance. Given the information set Ys = (y1, . . . , ys)
′

, the predictive likelihood, for model

Mk is defined for the data ys, . . . , yt as

p(ys, . . . , yt | Ys−1,Mk) =

∫

p(ys, . . . , yt | θk, Ys−1,Mk)p(θk|Ys−1,Mk)dθk (7)

where p(ys, . . . , yt | θk, Ys−1,Mk) is the conditional density given Ys−1, see Geweke (2005). The

predictive likelihood contains the out-of-sample prediction record of a model. Equation (7) is
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simply the product of the individual predictive likelihood:

p (ys, . . . , yt | Ys−1,Mn) =

T
∏

j=s

p (yj | Yj−1,Mn)

=

T
∏

j=s

N
(

Z
(n)
t θ

(n)
t|t−1,H

(n)
t + Z

(n)
t Σ

(n)
t|t−1Z

(n)′

t

)

,

(8)

where each element on the right hand side is automatically obtained by the on-line Kalman

filter routine.

Table 3 reports a comparison in terms of out-of-sample forecasting ability between models

(2) and (3). The out-of-sample period starts on August 1, 2007, as suggested in Covitz et al.

(2012), such that the out-of-sample period includes the sub-prime financial crisis, where it is

expected to observe shifts in the long-run mean of the volatility series. The RMSFE and the

log(PL) suggest that the model based on the centered series outperforms in most cases the

model with time varying intercept. This evidence confirms that the model in equation (2) is

not superior in describing the data than the model based on the centered series. This results

implies that the variability of the HAR parameters is not the spurious outcome of a neglected

time-varying intercept. Therefore, the variations in the dynamic pattern of volatility can be

better thought of as mainly due to changes in its autoregressive structure, and not as shifts in

the long-run mean.

An explanation for this result emerges from Figures 2-4 in the Web-Appendix, the estimates

of φd
t , φ

w
t and φm

t are almost identical to those obtained on the centered series, since the variation

of µt = αt/(1−φd
t −φw

t −φm
t ) is generally negligible when compared to the variation of the HAR

parameters. The only difference is in the estimates of φm
t , which is probably the consequence

of the lack of identification of µt during the year 2007, see Figure 5 in the Web-Appendix. In

particular, it emerges that, when the largest eigenvalue of the TV-HAR characteristic polynomial

is above 1, the estimated unconditional mean, µt, is no longer identified.

The impulse response functions (IRF) calculated with two different sets of parameters, ob-

tained at different points in time, are plotted in Figure 2. The main evidence is the large increase

in persistence during the crisis. For example, the impact of an innovation on the one-step-ahead

volatility is approximately 30% larger during the financial crisis than during previous periods.

After one month, the gap between the two IRFs remains above 10%. This suggests that the

increasing role of the daily volatility component during the financial crisis is reflected in an
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increase in the persistence of the volatility process.

Now, we turn our attention to the sequential estimates of the TFSV model, reported in

Figures 3 - 5. Consistently with the assumption that the changes in persistence are only due to

changes in the autoregressive structure of the HAR, the parameter ω, for both γ2(t) and ζ2(t), is

kept fixed and equal to half the sample average of BPV . This is consistent with Corsi and Reno

(2012) and it ensures identification of the unconditional mean of the TFSV process. Figure 3

plots the estimated objective function value, Ξt, for the period January 2006 - December 2009.

There is a notable difference between the dynamic behavior of the Ξt for the stocks belonging to

the financial sector and the others. In particular, on average Ξt is higher for the banking sector,

and it increases sharply during the period of the financial crisis. This indicates that the TFSV

model may be not flexible enough to capture the extent of variation in the volatility dynamics

of the financial stocks during the crisis. On the other hand, for the other companies, Ξt remains

more stable throughout the whole sample, with the exception of GE, which experienced serious

financial distress during the period January 2008 - March 2009.

The structural parameters governing the speeds of mean reversion display an interesting

dynamic pattern. The parameter κ, the speed of mean reversion of the fast moving factor,

ranges between 5 and 60 as shown in Figure 4. In particular, the parameter κ is smaller, on

average, for the banking sector than for the other stocks. This means that the volatility factor,

γ2(t), for the banking sector, reverts slower than the other stocks and hence is more persistent.

On the other hand, there is no a dominant trending pattern in the dynamic behavior of κ for the

other stocks. The parameter δ, see Figure 4, governs the speed of mean reversion of the persistent

factor. In all cases the estimates are close to 0, meaning that ζ2(t) is a close-to-unit-root process,

thus introducing high persistence in the volatility series. On average, the estimated parameters

are close to those found by Corsi and Reno (2012), based on the full sample. However, Figure 4

shows the extent of the time variation of the structural parameters when they are sequentially

estimated. This is particularly true for the parameters governing the volatility of the volatility,

in Figure 5. The parameter ν, which represents the volatility of the persistent factor, has an

upward trend, while η does not have a clear trend pattern and it varies around 0.05. On the

other hand, ν increases from 0.01 to 0.03 for the banking sector and from 0.005 to 0.015 for the

other stocks. This means that during the financial crisis, the relative weight of the persistent

volatility component increases with respect to the noisy factor, especially for the banking sector,

so that the volatility becomes more persistent and more volatile at the same time. The increase
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of the volatility of the persistent factor during the financial crisis not only induces the observed

growth of the volatility levels, but also increases the degree of uncertainty around its long-run

level. Therefore, the persistent volatility component, which mainly affects the size of the return

variance and the investor’s consumption in the long-run, plays an important role in the pricing of

options and becomes more and more relevant as the the crisis approaches. Hence, the variations

in the parameter ν, which summarizes the uncertainty of the investors toward the long-run

investments, are responsible not only for the observed changes in persistence but also for the

increase of the volatility of volatility.

The consequences of the extent of time variation of the SV parameters could be analyzed

focusing at the evolution of the volatility smile curve, as the parameters of the TFSV model are

updated. For each set of parameters Ψ̂t,the volatility smile is obtained from model (4) by Monte

Carlo simulations, see Andersson (2003).Figure 6 shows the evolution of the implied volatility

smile, based on the volatility parameters of BAC. The underlying price, S0, is assumed to be

always equal to 50, while K1 = 37 and Kl = 63. The level of the implied volatility increases, as

expected when the return and volatility trajectories are generated according to the parameters

estimated during the period of the crisis. This is due to the increase in the persistence of the

volatility series such that there is a higher probability of observing volatility values far from the

long-run mean. Interestingly, this behavior is mainly generated by an increase in the volatility

of the persistent factor and not by a structural break in the long-run mean of the process.

Moreover, we observe a higher curvature of the smile during the financial crisis, as measured by

the ratio

ξ(t1, t2) =
(V t2

K1
+ V t2

Kl
)/2− V t2

S0

(V t1
K1

+ V t1
Kl
)/2− V t1

S0

× 100 − 100, (9)

where VK1
, VKl

and VS0
are annualized implied volatilities corresponding to K1, Kl and S0,

while t1 and t2 indicate two different periods of time in which V is computed. Similarly to the

previous analysis, choosing t1 equal to December 31, 2007 and t2 equal to December 31, 2008

leads to a value of ξ equal to 47%. This means that the curvature of the volatility smile has

increased about 47% as a consequence of the changes in the SV parameters during the financial

crisis. In contrast to the findings in Pena et al. (1999), it seems that high volatility periods,

characterized by higher persistence and higher volatility of volatility, tend to be associated

with a larger curvature of the smile. Carr and Wu (2007) relates the curvature of the smile,

measured with the butterfly spread, to fat-tails or positive excess kurtosis in the risk neutral
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return distribution. We find empirical support for this evidence and we relate it to the increase

of the volatility of volatility during the financial crisis. In particular, we show that a Heston-

type SV model with time varying parameters is able to generate the stochastic variation of the

implied volatility smile observed by Carr and Wu (2007). This findings are coherent with the

generalization of the SV models proposed by Barndorff-Nielsen and Veraart (2013), who suggest

a stochastic model for the volatility of volatility relating it to the possibility of explaining the

variance risk premium as document Carr and Wu (2009).

5 Robustness Checks

The results of the simulations presented in this section are intended to verify that the empirical

results outlined in Section 4 are not spuriously induced by the adopted estimation method. In

particular, the estimation procedure outlined in Appendix A does not allow to test whether

the variation of the parameters is statistically significant. Therefore this set of Monte Carlo

simulations evaluates the ability of the on-line method to correctly estimate the time variation in

the parameters and to show the robustness of the selection method for the forgetting parameter,

λ.

Firstly, we verify whether the on-line method does not induce spurious variation in the TV-

HAR estimates. Therefore, the first set of Monte Carlo simulations is carried out according to

the following setup. We simulate S = 1000 times series of T = 1200 observations from a HAR

model with constant parameters, φd = 0.4, φw = 0.4 and φm = 0.15. The variance of εt is

assumed to follow a GARCH(1,1)

σ2
ε,t = ω + αǫ2t−1 + βσ2

ε,t−1, (10)

with ω = 0.01, α = 0.05 and β = 0.90. For each Monte Carlo replication, the TV-HAR

is estimated with a different choice of λ, where the latter is defined on the grid of values

[0.95, 0.955, . . . , 0.995, 1]. Minimizing the mean squared one-step-ahead prediction error, the

value of λ is found to be equal to 1 in 89% of cases. When λ = 1, the variability of the param-

eters is almost zero and the estimates are centered on the true values. Panels a)-c) in Figure 7

show the estimated TV-HAR parameters when the DGP is the constant HAR. The estimated

parameters are extremely smooth and display small variation around the constant parameters.

This means that when the parameters are constant, the on-line estimation method does not
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induce spurious variability, but the extent of time-variation in the estimates is negligible.

Secondly, we verify whether the parameter estimates obtained with the on-line method follow

the true variation of the TV-HAR parameters. Therefore, in the second Monte Carlo setup, we

simulate S = 1000 times a series of T = 1200 observations from model (3) where, in each Monte

Carlo replication, the TV-HAR parameters are those estimated on the log-BPV series of AXP ,

see Section 4. The only sources of randomness are therefore the TV-HAR innovations, εt, which,

as before, are assumed to be Gaussian with conditional variance evolving as in equation (10).

In 76.5% of the cases, the value of λ is chosen to be equal to 0.995, while in 18% of cases it is

chosen to be equal to 0.99%. Panels d)-f) in Figure 7 report the data-generating parameters

with the 90% confidence intervals obtained from the Monte Carlo estimates. The 90% confidence

intervals contain the data-generating values in all cases, suggesting that the methodology is able

to capture the variation in the parameters. It should be noted that, due to the recursive nature

of the estimation algorithm, the confidence intervals are particularly wide at the beginning of

the sample, while they narrow as the information set becomes larger. We can conclude that, the

on-line approach yields reliable estimates of the TV-HAR parameters and the proposed method

for the choice of λ provides a robust selection method for the updating mechanism of the new

information.

Thirdly, we verify whether the observed variation in the TV-HAR cannot be generated by

a structural model with constant parameters. In particular, our goal is to evaluate whether

the variation in the TV-HAR estimates is not spuriously induced by the on-line estimation

algorithm, while the parameters of the TFSV model are constant. We therefore simulate S =

1000 daily BPV series from model (4), holding the structural parameters constant. Consistently

with the findings presented in Section 4, the structural parameters are: κ = 5, δ = 0.001,

η = 0.05 and ν = 0.01. In particular, each RV series is generated with M̄ = 78 intradaily

returns for T = 1500 days. Panels a)-c) in Figure 8 report the estimation results. The on-line

estimates are generally close to the OLS estimates, which are based on the full sample, and they

always lie inside the OLS 90% confidence bands. This confirms that the observed variation in

the TV-HAR estimates is not induced by the adopted on-line estimation method, but it reflects

the presence of changes in the structural parameters.

Finally, we evaluate whether an increase in the volatility of the persistent volatility factor in

the TFSV induces the TV-HAR parameters to follow the trajectories obtained with the on-line

estimation method. Therefore, in the final Monte Carlo simulations, we let the parameter ν
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in the TFSV model to be time-varying, with a dynamic behavior as in Figure 5. The other

structural parameters are kept constant at the values κ = 5, δ = 0.001, η = 0.05. Panels d)-f) in

Figure 8 show strong variation in the estimated TV-HAR parameters, which is consistent with

the findings presented in the empirical analysis. In particular, the weight of the daily volatility

component sharply increases, while the weekly and monthly volatility terms become less and less

relevant at the end of the sample. Compared to the OLS estimates, based on the full sample,

the TV-HAR parameters have clear trends, similar to those obtained with the observed realized

volatility series, and they generally lie outside the 90% confidence bands. These results confirm

the reliability of the inference methods adopted and the robustness of the empirical analysis.

6 Conclusions

The persistent nature of equity volatility as a mixture of processes at different frequencies is

investigated by means of a TFSV model. The parameters are estimated using a novel and fast

algorithm based on the state-space representation of the TV-HAR, as auxiliary model in the

sequential indirect inference estimation. From the TV-HAR estimates it emerges an increasing

role of the daily volatility component during the financial crisis, whereas the monthly term

becomes insignificant. The main finding that arise from the estimates of the TFSV model is

the crucial role played by the volatility of the persistent volatility factor during the financial

crisis. This induces the BPV dynamics to diverge from the long run mean and to become

more and more volatile. From a financial point of view, this evidence can be interpreted as

an increase of the uncertainty about the long-run asset values, thus generating excess kurtosis.

As a consequence, the implied volatility curve changes its shape and curvature along with the

updating of the SV parameters and the increase of the volatility of volatility.
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A Estimation Method

The estimation methodology requires a state-space specification of the TV-HAR model in equa-

tion (3),

yt = Ztθt + εt εt ∼ N(0,Ht),

θt = θt−1 + ηt ηt ∼ N(0,Qt),

(11)

where yt is the observed variable, Zt = [ydt−1, y
w
t−1, y

m
t−1] is a 1 × 3 vector containing the HAR

lag structure, and θt = [φd
t , φ

w
t , φ

m
t ]′ is a 3 × 1 vector of time varying parameters, which are

assumed to follow random-walk dynamics. In this setup, the HAR parameters are considered as

state variables, while the past values of yt are the explanatory variables. The errors εt and ηt

are assumed to be mutually independent at all leads and lags.

Once model (3) is casted in the state space form (11) , the parameter vector θt can be easily

estimated with a standard Kalman filtering technique. The prediction step for given values of

Ht and Qt is:

θt|t−1 = θt−1|t−1

Σt|t−1 = Σt−1|t−1 +Qt

ǫt|t−1 = yt − Ztθt|t−1.

(12)

where Σt|t−1 is the covariance matrix of θt|t−1. However, the estimation of Qt requires computa-

tionally intensive algorithms, such as MCMC methods. Therefore Raftery et al. (2010) suggest

to substitute the prediction equation of Σt|t−1 in equation (12) with

Σt|t−1 =
1

λ
Σt−1|t−1, (13)

so that Qt = (λ−1 − 1)Σt−1|t−1 where 0 < λ < 1. This approach has been introduced in

the state space literature by Fagin (1964) and Jazwinsky (1970), to reduce the computational

burden of the traditional Kalman filter. Raftery et al. (2010) provide a detailed discussion of this

approximation, especially regarding the tuning parameter λ. The parameter λ can be considered

as a forgetting factor, since the specification in equation (13) implies that the weight associated

to the observations j periods in the past is equal to λj . Following Raftery et al. (2010) and
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Koop and Korobilis (2012), the parameter λ must be chosen large enough in order to guarantee

a sufficient degree of smoothness. For quarterly data, Koop and Korobilis (2012) suggest that λ

should be chosen between 0.95 and 0.99. In this paper, the choice of λ is such that it minimizes

the mean squared one-step-ahead prediction error. With daily data, we find that the optimal

λ is equal to 0.995. This value for λ is consistent with a fairly stable model where changes of

the coefficients are gradual. For example, observations 22 days ago receive approximately 90%

of the weight given to the last observation, whereas with λ = 0.95 they receive approximately

33%.

It is interesting to note that the simplification used by Raftery et al. (2010) implies that Qt

does not need to be estimated. However, a method to estimate Ht, which is the variance of the

irregular component, is still required. Raftery et al. (2010) recommend a simple plug-in method

where an estimate of Ht is given by

Ht|t−1 =
1

t

t
∑

j=1

[

(yj + Zjθj−1|j−1)
2 − ZjΣj|j−1Z

′

j

]

. (14)

Since RV is shown to be heteroskedastic, see Corsi et al. (2008), so that the error variance is likely

to change over time, we adopt an alternative method to compute the variance Ht. Following

Koop and Korobilis (2012), Ht follows an exponentially weighted moving average,

Ht|t−1 = κHt−1|t−1 + (1− κ)(yt − Ztθt|t−1)
2, (15)

with κ = 0.94, so that the variance of the error term is allowed to vary over time and the

estimates of the TV-HAR parameters are robust to heteroskedastic effects, especially during the

financial crisis.

Finally, equations (16) and (17), conditional on Ht|t−1, are all analytical expressions and thus

no simulation-based methods are required. In particular, given Ht|t−1 and Σt|t−1, the updating

recursions for the parameters of the model are given by:

θt|t = θt|t−1 +Σt|t−1Zt(Ht|t−1 + ZtΣt|t−1Z
′

t)
−1(yt − Ztθt|t−1) (16)

and

Σt|t = Σt|t−1 −Σt|t−1Zt(Ht|t−1 + ZtΣt|t−1Z
′

t)
−1ZtΣt|t−1. (17)
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Clearly different estimation approaches, based on Bayesian and maximum likelihood meth-

ods, can be applied. In principle, maximum likelihood estimation with the Kalman filter routine

could be an alternative, see Durbin and Koopman (2001) for an introduction. However, the

on-line method avoids the empirical drawbacks of standard likelihood methods such as multiple

maxima, instability and lack of identification of the state vector parameters. Alternatively, in

the Bayesian framework, an interesting approach has been proposed by Groen et al. (2012), who

suggest to draw posteriors using an extension of the mixture sampling of Gerlach et al. (2000).

This approach, although reliable, is computationally intensive and requires a proper choice of

the priors. On the other hand the on-line estimation method allows for a fast updating of the

parameters and does not require to select optimal priors for the initial states. The sequential

method is also particularly appealing for real-time financial decisions, where the trader needs to

update the parameters as new observations arrive. Indeed, the updating of the parameters only

requires to run equations (13), (15), (16) and (17) once a new observation is available. This

explains why this class of methods is often called on-line.
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B Figures and Tables

Sector Ticker Company

BANKING AND FINANCE AXP American Express
BAC Bank of America
C Citygroup
GS Goldman & Sachs
JPM JP Morgan
MET Met Life
MS Morgan Stanley
WFC Wells Fargo

OIL, GAS AND BASIC MATERIALS XOM Exxon

FOOD, BEVERAGE AND LEISURE MCD Mc Donalds

HEALTH CARE AND CHEMICAL PG Procter & Gamble

INDUSTRIAL GOODS BA Boeing

RETAIL AND TELECOMMUNICATIONS T AT&T

SERVICES GE General Electric

TECHNOLOGY IBM International Business Machines

Table 1: Sector, Companies and Ticker
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MIN DATE MAX DATE RANGE

φd

AXP 0.2032 2006-10-06 0.5257 2009-02-06 0.3225

BA 0.1803 2006-10-24 0.5349 2009-02-04 0.3546

BAC 0.2784 2006-04-12 0.6157 2008-09-16 0.3373

C 0.2372 2006-08-08 0.6167 2009-05-13 0.3795

GE 0.0390 2006-04-13 0.6064 2009-06-18 0.5674

GS 0.2681 2006-04-07 0.6321 2009-01-29 0.3640

IBM 0.0819 2006-10-05 0.5109 2009-01-29 0.4290

JPM 0.2409 2006-04-12 0.6948 2009-01-27 0.4539

MCD 0.1139 2006-10-03 0.4275 2009-02-12 0.3136

MET 0.1804 2006-02-24 0.5533 2009-02-20 0.3729

MS 0.2275 2006-12-26 0.6344 2009-01-27 0.4070

PG 0.1071 2006-03-24 0.4004 2009-02-09 0.2933

T 0.0261 2006-04-13 0.4263 2008-12-02 0.4002

WFC 0.0971 2006-04-17 0.5727 2009-01-26 0.4756

XOM 0.2299 2006-10-11 0.5840 2009-01-15 0.3541

φw

AXP 0.1086 2007-05-14 0.5927 2008-07-15 0.4841

BA 0.2353 2009-10-16 0.5649 2006-02-21 0.3297

BAC 0.1002 2007-07-17 0.5047 2006-04-12 0.4045

C 0.2150 2007-07-13 0.5233 2008-08-28 0.3083

GE 0.2768 2009-06-18 0.7438 2006-04-18 0.4669

GS 0.2171 2007-03-21 0.5208 2007-12-10 0.3037

IBM 0.3802 2007-07-23 0.7263 2006-10-05 0.3461

JPM 0.1949 2007-06-26 0.5517 2008-07-15 0.3568

MCD 0.2284 2006-05-10 0.5595 2008-12-30 0.3312

MET 0.2476 2007-03-20 0.6042 2007-12-10 0.3565

MS 0.2544 2007-07-13 0.5187 2007-11-09 0.2643

PG 0.2533 2007-03-20 0.6889 2006-03-24 0.4356

T 0.3437 2007-03-15 0.7239 2006-02-21 0.3802

WFC 0.1045 2007-04-30 0.5725 2008-09-18 0.4680

XOM 0.3220 2009-11-13 0.6519 2006-10-11 0.3299

φm

AXP -0.0233 2008-09-19 0.5877 2006-11-10 0.6110

BA 0.0201 2008-07-22 0.3670 2007-03-19 0.3469

BAC -0.0062 2008-09-18 0.4213 2007-08-14 0.4275

C -0.0099 2008-08-21 0.4054 2006-08-11 0.4153

GE 0.0298 2009-06-18 0.7438 2006-04-18 0.4669

GS -0.0042 2008-09-18 0.3993 2006-05-11 0.4034

IBM -0.0158 2008-12-31 0.2358 2007-01-26 0.2516

JPM -0.0356 2008-09-19 0.3749 2007-06-21 0.4105

MCD 0.0104 2008-12-30 0.5100 2007-01-26 0.4996

MET -0.0125 2008-09-19 0.4783 2007-06-04 0.4908

MS -0.0091 2008-09-18 0.3781 2007-02-22 0.3872

PG -0.0027 2008-07-28 0.3116 2007-07-16 0.3143

T 0.0133 2008-12-16 0.3321 2007-01-23 0.3188

WFC -0.0108 2008-09-18 0.5363 2007-02-22 0.5471

XOM -0.0460 2007-12-10 0.1068 2007-07-11 0.1528

Table 2: Summary statistics of the TV-HAR parameters. Table reports the minimum and the
maximum of the observed values of the TV-HAR parameters with the corresponding dates. Last
column reports the range of variation of the parameters, calculated as MAX −MIN .

RMSEr RMSEu log(PL)r log(PL)u

AXP 0.4763 0.4786 -421.9994 -424.9833
BA 0.5073 0.5070 -468.7136 -466.9602

BAC 0.5469 0.5506 -513.9557 -516.8078
C 0.6154 0.6176 -578.2686 -580.6340
GE 0.5578 0.5613 -525.0722 -526.7052
GS 0.4835 0.4850 -399.1553 -399.1658
IBM 0.4672 0.4705 -394.3845 -394.5168
JPM 0.4545 0.4583 -390.1873 -394.0390
MCD 0.5139 0.5146 -452.3584 -451.1535

MET 0.4948 0.4961 -450.8025 -451.1418
MS 0.5131 0.5150 -426.0185 -427.4654
PG 0.4987 0.5006 -424.8467 -422.7409

T 0.5157 0.5161 -458.1966 -456.0033

WFC 0.4888 0.4912 -430.6668 -433.5275
XOM 0.4394 0.4407 -345.3549 -344.0124

Table 3: Out-of-sample forecast comparison. Table reports the RMSE and the log predictive
likelihood (log(PL)) for the model with (u) and without (r) the intercept. The out of sample
period starts from August 1, 2007 to December 31, 2009.
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Figure 1: On-line estimates of the TV-HAR parameters, φd
t , φ

w
t and φw

t , of AXP, GE and IBM.
The solid red line is the on-line estimate, while the blue dotted line is the OLS estimate based
on the full sample. The dashed green lines correspond to the 90% confidence band.
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Figure 2: Impulse response functions based on two different sets of parameters. The dates, t1
and t2, are chosen such that the difference |φd

t1
− φd

t2
| is maximized, see Table 2.
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Figure 3: Ξt criterion for the two-factors model. Panel (a) reports Ξt for the stocks belonging
to the bank-financial sector, while Panel (b) reports the Ξt distance for the stocks belonging to
the other sectors of US economy.
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(c) κ: OTHERS
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Figure 4: Estimated parameters κ and δ of the two-factors model. Panel (a) and (c) report the
estimates of the parameter κ for the stocks belonging to the bank-financial sector and the other
sectors of US economy respectively. Panel (b) and (d) report the estimates of the parameter
δ for the stocks belonging to the bank-financial sector and the other sectors of US economy
respectively.
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(b) ν: BANK SECTOR
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(c) η: OTHERS
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Figure 5: Estimated parameters ν and η of the two-factors model. Panel (a) and (c) report the
estimates of the parameter η for the stocks belonging to the bank-financial sector and the other
sectors of US economy respectively. Panel (b) and (d) report the estimates of the parameter
ν for the stocks belonging to the bank-financial sector and the other sectors of US economy
respectively.
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Figure 6: Implied Volatility Smile Evolution based on the stochastic volatility parameters of BAC. The x-axis reports the dates, the y-axis reports
the strike prices at maturity (90 days), which range from 40 to 60. The annualized volatility values are reported on the z-axis.
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Figure 7: Estimates of the TV-HAR parameters with the on-line method. Panels a)-c) report
the TV-HAR estimates when the DGP is a constant HAR model. The dashed blue line is the
true parameter, while the solid red line is the on-line estimate. Panels d)-f) report the true
parameter (solid black line), and the 90% Monte Carlo confidence band (dashed red lines) when
the DGP is a TV-HAR with time-varying parameters.
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Figure 8: Estimates of the TV-HAR parameters with the on-line method. Panels a)-c) report
the estimates of the TV-HAR parameters when the volatility series is generated from a TFSV
model with constant parameters. The red solid line is the average for each t ∈ [1 : T ] of the
on-line estimates, while the dotted blue line is the average of the OLS estimates based on the full
sample. The green dashed lines correspond to the 90% confidence bands of the OLS estimates.
Panels d)-f) report the estimates of the TV-HAR parameters when the RV is generated from a
TFSV model with time-varying parameters. The red solid line is the average for each t ∈ [1 : T ]
of the on-line estimates. The dotted blue line is the average of the OLS estimates based on the
full sample, while the green dashed lines correspond to the 90% confidence bands of the OLS
estimates..
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